Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan
Rangkuman Materi Peluang Matematika

Rangkuman Materi Peluang Matematika

Pada permodelan stokastik kita sering perlu memeriksa validitas suatu model dengan menggunakan data empirik.
Mathematics

Agar bisa memperoleh data empirik yang menggambarkan perilaku suatu fenomena, kadangkala kita perlu mengadakan percobaan yang dapat diulang dalam kondisi yang sama.

Meskipun diulang dalam kondisi yang sama, hasil percobaan ini tidak dapat ditebak dengan tepat, namun kita mengetahui semua kemungkinan hasilnya.

Ruang Contoh
Himpunan semua hasil suatu percobaan acak disebut ruang contoh atau yang sering disebut ruang sampel. Lambangnya dinotasikan dengan (omega).

Setiap unsur atau anggota ruang contoh disebut titik contoh.

Ruang contoh suatu percobaan akan berbeda-beda tergantung dari tujuan percobaan tersebut atau tergantung dari apa yang diamati terhadap hasil suatu percobaan.

Kejadian
Kejadian adalah himpunan bagian suatu ruang contoh.

Kita katakan suatu kejadian E, , muncul atau terjadi jika hasil percobaan berpadanan dengan sebuah unsur dari E.

Suatu kejadian yang hanya terdiri atas satu unsur ruang contoh disebut kejadian sederhana.

Kejadian-kejadian lainnya, pada dasarnya dapat dinyatakan sebagai gabungan dari beberapa kejadian sederhana dan disebut dengan kejadian majemuk.

Komplemen Suatu Kejadian
Jika E adalah suatu kejadian, maka komplemen (tandingan) dari E yang biasa ditulis . Komplemen suatu kejadian adalah suatu kejadian yang unsurnya adalah semua anggota ruang contoh yang tidak merupakan unsur dari E.

Dua Kejadian Lepas
Jika E dan F adalah dua kejadian, maka E dan F disebut dua kejadia lepas atau terpisah, jika dan hanya jika tidak ada unsur dari E yang juga merupakan unsur dari F atau sebaliknya.

Gabungan Dua Kejadian
Gabungan dua kejadian E dan F, ditulis adalah suatu kejadian yang unsurnya adalah semua unsur ruang contoh yang termasuk unsur kejadian E atau unsur kejadian F atau unsur keduaya (E dan F).

Irisan Dua Kejadian
Irisan dua kejadian E dan F yang dituliskan sebagai adalah suatu kejadian yang unsurnya adalah semua unsur ruang contoh yang sekaligus termasuk unsur kejadian E dan kejadian F.

Medan (sigma)
Medan (sigma) adalah suatu himpunan f  yang anggotanya adalah himpunan bagian dari ruang contoh serta memenuhi syarat-syarat di bawah ini:
1.
2. Jika maka
3. Jika maka dengan menyatakan komplemen dari A.

Jadi, suatu himpunan f disebut medan (sigma) jika adalah anggota dari f, tertutup terhadap operasi gabungan takhingga, dan f tertutup terhadap operasi komplemen.

Misalkan dan f adalah himpunan semua selang terbuka di R. Jika sehingga B  adalah suatu medan , maka B disebut medan Borel, dan anggotanya disebut himpunan Borel.

Aksioma Peluang
Suatu ukuran peluang P pada adalah suatu fungsi P : f ---> [0,1] yang memenuhi syarat-syarat berikut ini :
1. Untuk setiap kejadian A berlaku
2.
3. Jika adalah barisan kejadian-kejadian yang saling lepas yaitu untuk setiap pasangan i,j dengan i # j, maka:


Pasangan disebut dengan ruang peluang.

Aksioma peluang diatas merupakan aturan-aturan yang harus dipatuhi agar dan P memenuhi syarat sebagai suatu model peluang.

Misalkan adalah ruang contoh suatu percobaan, serta E dan F adalah dua kejadian. Kita sebut E dan F memiliki kemungkinan yang sama untuk terjadi jika P(E) = P(F).

Berikut ini merupakan akibat dari aksioma perluang di atas: 
PERTAMA. Peluang dari himpunan kosong adalah 0, . Peluang dari himpunan kosong disebut juga dengan kejadian mustahil.

KEDUA. Jika adalah himpunan kejadian-kejadian lepas, maka:


KETIGA. Jika ruang contoh terdiri atas N titik contoh yang masing-masing berpeluang sama untuk terjadi, serta kejadian A terdiri atas N(A) unsur, maka:
P(A) = N(A) / N

KEEMPAT. Untuk sembarang kejadian E, maka:


KELIMA. Jika maka:


KEENAM. Jika maka P(E) P(F)

KETUJUH.

KEDELAPAN.


Cara Menyelesaikan Persamaan Linear  Tiga Variabel

Cara Menyelesaikan Persamaan Linear Tiga Variabel

Kembali lagi bersama saya di blog tetamatika, tetamatika memberikan berbagai administrasi guru, materi ajar, media pembelajaran yang berkaitan dengan pelajaran matematika. Kali ini saya akan membahas tentang materi Sistem Persamaan Linear Dua Variabel dan Tiga Variabel Kelas X Semester 1Sistem persamaan linear 3 variabel, merupakan himpunan 3 buah persamaan dengan variabel sebanyak 3. Bentuk ini satu tingkat lebih rumit dibandingkan sistem persamaan linear 2 variabel
Metoda meyelesaikan persamaan

1. Metoda Eliminasi

2. Metoda subtitusi

Metoda Eliminasi

Supaya lebih mudah langsung saja kita masuk ke contoh-contoh

Contoh soal 1 :

2x + 3y – z = 20
3x + 2y + z = 20
x + 4y + 2z = 15
Jawab :
Ketiga persamaan bisa kita beri nama persamaan (1), (2), dan (3)
2x + 3y – z = 20 ………………………..(1)
3x + 2y + z = 20 ………………………..(2)
x + 4y + 2z = 15 ………………………..(3)
Sistem persamaan ini harus kita sederhanakan menjadi sistem persamaan linear 2 variabel. Untuk itu kita eliminasi variabel z
Sekarang persamaan (1) dan (2) kita jumlahkan
2x + 3y – z = 20
3x + 2y + z = 20_____   +
5x + 5y = 40
x + y = 8 ………………….(4)
Selanjutnya persamaan (2) dikali (2) dan persamaan (3) dikali (1) sehingga diperoleh
6x + 4y + 2z = 40
x + 4y + 2z = 15____  _
5x = 25
x = 5
Nilai x ini kita subtitusi ke persamaan (4) sehingga
x + y = 8
(5) + y = 8
y = 3
selanjutnya nilai x dan y yang ada kita subtitusikan ke persamaan (2)
3x + 2y + z = 20
3.(5) + 2.(3) + z = 20
15 + 6 + z = 20
z = -1
Jadi, himpunan penyelesaiannya adalah {(5, 3, -1)}


Contoh soal 2 :
Tentukan himpunan penyelesaian dari
3x + 4y – 3z = 3
2x – y + 4z = 21
5x + 2y + 6z = 46
Jawab :
Agar lebih mudah, ketiga persamaan kita beri nama (1), (2), dan (3)
3x + 4y – 3z = 3  …………………………….(1)
2x – y + 4z = 21  …………………………….(2)
5x + 2y + 6z = 46 …………………………….(3)
Selanjutnya persamaan (1) dikali 1 dan persamaan (2) dikali 4, sehingga diperoleh
3x + 4y – 3z = 3    |1| → 3x + 4y – 3z = 3
2x – y + 4z = 21    |4| → 8x – 4y+16z = 84    +
.                                  11x + 13z = 87 ……………..(4)
Berikutnya persamaan (3) dikali 1 dan persamaan (2) dikali 2, sehingga diperoleh
5x + 2y + 6z = 46    |1| → 5x + 2y + 6z = 46
2x – y + 4z = 21      |2| → 4x – 2y + 8z = 42     +
.                                    9x + 14z = 88 …………..(5)
Sekarang persamaan (5) dikali 11 dan persamaan (4) dikali 9 sehingga diperoleh
9x + 14z = 88   |11|   99x +154z = 968
11x + 13z = 87  |9|    99x + 117z=783       _
.                                      37z = 185
.                                          z = 5
Nilai z=5 kita subtitusi ke persamaan (4)
11x + 13z = 87
11x + 13.(5) = 87
11x + 65 = 87
11x = 22
x = 2
Nilai x=2 dan z=5 kita subtitusikan ke persamaan (3) sehingga
5x +2y +6z = 46
5.(2) +2y +6.(5) = 46
10 + 2y + 30 = 46
2y = 6
y = 3
Jadi, himpunan penyelesaiannya adalah {(2, 3, 5)}


Metoda subtitusi

Contoh soal 3

Himpunnan penyelesaian sistem persamaan
2x + 5y + 4z = 28
3x – 2y + 5z = 19
6x + 3y – 2z = 4
adalah …
Jawab :
Sekarang setiap persamaan kita beri nama (1), (2), dan (3)
2x + 5y + 4z = 28 ……………………………………..(1)
3x – 2y + 5z = 19……………………………………….(2)
6x + 3y – 2z = 4…………………………………………(3)
Persamaan (1) bisa kita ubah sebagai berikut
2x + 5y + 4z = 28
4z = 28 – 2x – 5y
 ………………………………………..(4)
Selanjutnya persamaan (4) kita subtitusikan ke persamaan (2) sehingga
3x – 2y + 5z = 19
Jika kedua ruas dikali dengan 4 maka diperoleh
12x – 8y + 140 – 10x – 25y = 76
2x -33y = -64 ……………………………………….(5)
Sekarang persamaan (4) kita subtitusikan ke persamaan (3) sehingga
6x + 3y – 2z = 4
Jika kedua ruas dikali 4 maka
24x + 12y – 56 + 4x + 10y = 16
28x + 22y = 72
14x + 11y = 36
11y = 36 – 14x
…………………………………………(6)
Sekarang persamaan (6) kita subtitusikan ke persamaan (5) sehingga
2x -33y = -64
2x – 108 + 42x = -64
44x = 44
x=1
Jadi, himpunan penyelesaiaannya adalah {(1, 2, 4)}
Cara Menyelesaikan Persamaan Dan Pertidaksamaan Nilai Mutlak

Cara Menyelesaikan Persamaan Dan Pertidaksamaan Nilai Mutlak

Nilai mutlak suatu bilangan dapat diartikan jarak antara bilangan tersebut dari titik nol(0). Dengan demikian jarak selalu bernilai positif.

Misalnya:

Parhatikan garis bilangan berikut.







Jarak angka 6 dari titik 0 adalah 6

Jarak angka -6 dari titik 0 adalah 6 

jarak angka -3 dari titik 0 adalah 3

Jarak angka 3 dari titik0 adalah 3.



Dari penjelesan di atas memang tampak bahwa nilai mutlak suatu bilangan selalu bernilai positif. 

Berkaitan dengan menentukan nilai mutlak suatu bilangan, maka muncullah tanda mutlak. Tanda mutlak disimbolkan dengan  garis 2 ditepi suatu bilangan atau bentuk aljabar.

Misalnya seperti berikut.






Secara umum, bentuk persamaan nilai mutlak dapat dimaknai seperti berikut.





Jika kita mempunyai persamaan dalam bentuk aljabar, maka dapat dimaknai sebagai berikut.





Jadi, bentuk dasar di atas dpat digunakan untuk membantu menyelesaikan persamaan mutlak.

Lebih jelasnya perhatikan contoh-contoh berikut.


Contoh

Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.









Jawaban:

Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut. Pada prinsipnya, langkah langkah penyelesaian nilai mutlak diusahakan bentuk mutlak berada di ruas kiri. 

1. Pada bentuk ini ada dua penyelesaian.

   (*) x + 5 = 3  , maka  x = 3 - 5 = -2

   (**) x + 5 = -3, maka x = -3 - 5 = -8

  Jadi, himpunan penyelesaiannya adalah {-2, -8}


2.  Pada bentuk ini ada dua penyelesaian.

   (*) 2x + 3 = 5  , maka  2x = 5 - 3

                                       2x = 2  <==>  x = 1

   (**) 2x + 3 = -5  , maka  2x = -5 -3

                                         2x = -8  <==> x = -4

  Jadi, himpunan penyelesaiannya adalah {-4, 1}


3. Perhatikan bentuk aljabar di dalam tanda mutlak, yaitu x+1. Penyelesaian persamaan nilai mutlak ini juga dibagi menjadi dua bagian. Bagian pertama untuk batasan x+1>= 0 atau x >= -1 Bagian kedua untuk batasan x+1< 0 atau x < -1
Mari kita selesaikan.

(*) untuk x >=-1

     Persamaan mutlak dapat ditulis:

    (x + 1) + 2x = 7

                   3x = 7 - 1

                   3x = 6

                     x = 2 (terpenuhi, karena batasan >= -1)

(**) untuk x < -1

     Persamaan mutlak dapat ditulis:

    -(x + 1) + 2x = 7

        -x - 1 + 2x = 7

                      x = 7 + 1                

                      x = 8 (tidak terpenuhi, karena batasan < -1)

Jadi, Himpunan penyelesaiannya adalah {2}.


 4.  Perhatikan bentuk  aljabar di dalam tanda mutlak, yaitu 3x + 4. Penyelesaian persamaan nilai  mutlak ini juga dibagi menjadi dua bagian. 
Bagian pertama untuk batasan 3x+4>= 0 atau x >= -4/3
Bagian kedua untuk batasan 3x+4< 0 atau x < -4/3

Mari kita selesaikan.

(*) untuk x >=-4/3

     Persamaan mutlak dapat ditulis:

    (3x + 4) = x - 8

        3x - x = -8 - 4

             2x =-12

               x = -6 (tidak terpenuhi, karena batasan >= -4/3)

(**) untuk x < -4/3

     Persamaan mutlak dapat ditulis:

    -(3x + 4) = x - 8

        -3x - 4 = x -8

         -3x - x = -8 + 4

              -4x = -4

                 x = 1 (tidak terpenuhi, karena batasan < -4/3)


Jadi, Tidak ada Himpunan penyelesaiannya.

Menyelesaikan Pertidaksamaan Nilai Mutlak

Menyelesaikan pertidaksamaan nilai mutlak caranya hampir sama dengan persamaan nilai mutlak. hanya saja berbeda sedikit pada tanda ketidaksamaannya. Langkah-langkah selanjutnya seperti menyelesaikan pertidaksamaan linear atau kuadrat satu variabel .

Pertidaksamaan  mutlak dapat digambarkan sebagai berikut.







Apabila fungsi di dalam nilai mutlak berbentuk ax + b maka pertidaksamaan nilai mutlak dapat diselesaikan seperti berikut.








Lebih jelasnya perhatikan contoh berikut ini.

Contoh
Tentukan himpunan penyelesaian dari Pertidaksamaan nilai mutlak berikut ini.









Jawaban

1. Cara menyelesaikan pertidaksamaan mutlak ini sebagai berikut.

    -9 < x+7 < 9

    -9 - 7 < x < 9 - 7

       -16 < x < 2
   Jadi, himpunan penyelesaiannya adalah { x/ -16 < x < 2}


2. Cara menyelesaikan pertidaksamaan mutlak ini dibagi menjadi dua bagian.

   (*) 2x - 1 >=  7

             2x  >=  7 + 1

             2x  >= 8

               x  >= 4


  (**) 2x - 1 <= -7


             2x   <= -7 + 1

             2x   <= -6

               x   <= -3
  
    Jadi, himpunan penyelesaiannya adalah { x/ x <= -3 atau x >= 4}


 3. Kalau dalam bentuk soal ini, langkah menyelesaikan pertidaksamaannya dengan mengkuadratkan kedua ruas. perhatikan proses berikut ini.

(x + 3)2 <= (2x – 3)2

(x + 3)2 - (2x – 3)2
<= 0


(x + 3 + 2x – 3) - (x + 3 – 2x + 3)
<= 0 (ingat: a2 – b2 =
(a+b)(a-b))



x (6 - x) <=0

Pembuat nol adalah x = 0 dan x = 6
Mari selidiki menggunakan garis bilangan Oleh karena batasnya <= 0, maka penyelesaiannya adalah x <=0 atau x >=6. Jadi, himpunan  penyelesaiannya adalah {x/ x <= 0 atau x >= 6}. Mari selidiki menggunakan garis bilangan





Oleh karena batasnya <= 0, maka penyelesaiannya adalah x <=0 atau x >=6.
Jadi,
himpunan penyelesaiannya adalah {x/ x <= 0 atau x >= 6}.

4. Menyelesaikan pertidaksamaan nilai mutlak seperti ini lebih mudah menggunakan cara menjabarkan definisi. Prinsipnya adalah batasan-batasan pada fungsi nilai mutlaknya. Perhatikan pada 3x + 1 dan 2x + 4.








Dari batasan batasan itu maka dapat diperoleh batasan-batasan nilai penyelesaian seperti pada garis bilangan di bawah ini.








Dengan garis bilangan tersebut maka pengerjaanya dibagi menjadi 3 bagian daerah penyelesaian.

1. Untuk batasan x >= -1/3  ......(1)

   (3x + 1) - (2x + 4) < 10

          3x + 1 - 2x- 4 < 10

                         x- 3 < 10

                             x < 13 .......(2)

Dari (1) dan (2) diperoleh irisan penyelesaian -1/3 <= x < 13




2. Untuk batasan -2<= x < -1/3  ......(1)

    -(3x + 1) - (2x + 4) < 10

          -3x - 1 - 2x - 4 < 10

                       -5x - 5 < 10

                             -5x < 15 

                               -x < 3

                             x > 3 .......(2)

Dari (1) dan (2) tidak diperoleh irisan penyelesaian atau tidak ada penyelesaian.



3. Untuk batasan x < -2  ......(1)

   -(3x + 1) + (2x + 4) < 10

         -3x - 1 + 2x + 4 < 10

                        -x + 3 < 10

                             -x  < 7

                                x > -7 .......(2)



Dari (1) dan (2) diperoleh irisan penyelesaian -7 < x < -2.

Jadi, himpunan penyelesaiannya adalah {x/ -1/3 <= x < 13 atau -7 < x < -2}.

Perhatikan contoh Pertidaksamaan mutlak lainnya berikut.