Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan
Tampilkan postingan dengan label KelasXI. Tampilkan semua postingan
Tampilkan postingan dengan label KelasXI. Tampilkan semua postingan
Materi Matematika Dan Pembahasan Soal Limit Trigonometri

Materi Matematika Dan Pembahasan Soal Limit Trigonometri

Limit trigonometri adalah nilai terdekat suatu sudut pada fungsi trigonometri. Perhitungan limit fungsi trigonometri bisa langsung disubtitusikan seperti limit fungsi aljabar tetapi ada fungsi trigonometri yang harus diubah dulu ke identitas trigonometri untuk limit tak tentu yaitu limit yang apabila kita langsung subtitusikan nilainya bernilai 0, bisa juga untuk limit tak tentu tidak harus menggunakan identitas tetapi menggunakan teorema limit trigonometri atau ada juga yang menggunakan identitas dan teorema. Jadi apabila suatu fungsi limit trigonometri di subtitusikan nilai yang mendekatinya menghasilkan dan maka kita harus menyelesaikan dengan cara lain.
Untuk menentukan nilai limit suatu fungsi trigonometri terdapat beberapa cara yang bisa dipakai :
  1. Metode Numerik
  2. Subtitusi
  3. Pemfaktoran
  4. Kali Sekawan
  5. Menggunakan Turunan
Penulisan nya adalah sebagai berikut :
lim┬(x→c)⁡〖f(x)〗
Cara membaca dari limit di atas yaitu limit fungsi f(x) untuk x mendekati c.
  1. Macam- Macam Trigonometri dan Identitasnya

  1. Macam-macam trigonometri

Berikut ini adalah nama-nama trigonometri yang kita kenal :
  1. Sinus (sin)
  2. Tangen (tan)
  3. Cosinus (cos)
  4. Cotongen (cot)
  5. Secan (sec)
  6. Cosecan (Csc)
  1. Rumus kebalikan

sin⁡〖∝ = 1/csc⁡∝ 〗 cos⁡〖∝ =〗  1/sec⁡∝  tan⁡〖∝ = 1/cot⁡∝ 〗 tan⁡〖∝ = sin⁡∝/cos⁡∝ 〗 cot⁡∝=cos⁡∝/sin⁡∝
  1. Identitas Trigonometri

sin^2⁡〖∝ + cos^2⁡〖∝ =1〗 〗  1+cot^2⁡∝=csc^2⁡∝  tan^2⁡〖∝+1=sec^2⁡∝ 〗
  1. Rumus Jumlah dan Selisih

rumus jumlah dan selisih limit trigonometri
  1. Rumus Perkalian

rumus perkalian trigonometri
  1. Rumus sudut rangkap

rumu sudut rangkap
  1. Teorema limit trigonometri

Ada beberapa teorema yang dapat digunakan untuk menyelesaikan persoalan limit trigonometri yaitu :

Teorema A

lim┬(x→0)⁡〖sin⁡x/x〗=lim┬(x→0)⁡〖x/sin⁡x 〗=1 lim┬(x→0)⁡〖tan⁡x/x〗=lim┬(x→0)⁡〖x/tan⁡x 〗=1 lim┬(x→0)⁡〖(1-cos⁡x)/x〗=0
Teorema di atas hanya berlaku saat (x -> 0) .

Teorema B

Terdapat beberapa teorema yang berlaku. Untuk setiap bilangan real c di dalam daerah asal fungsi yaitu :
teorema B limit trigonometri
Biasanya dalam soal limit fungsi trigonometri nilai terdekat dari limit fungsinya yaitu berupa sudut sudut istimewa yaitu sudut yang memiliki nilai sederhana. Untuk itu kita perlu mengetahui nilai-nilai sudut istimewa yang disajikan table di bawah ini :
tabel sudut istimewa
Agar lebih jelas dibawah ini terdapat beberapa contoh soal limit fungsi trigonometri
Contoh soal :
  1. Selesaikan limit trigonometri berikut :
Jawab ;
Melihat bentuk limit pada soal di atas kita dapat langsung mensubtitusikan nilai x.
  1. Selesaikan limit trigonometri berikut :
Jawab :
Melihat bentuk limit di atas makan kita dapat mengarahkan limit ke bentuk teorema A
Tetapi dalam soal fungsi sinus adalah 3x bukan x sebagaimana syarat dari teorema A. Maka kita dapat mengalikan fungsi dengan 1 agar nilainya tidak berubah
jawaban soal nomor 2
Dikali dengan 3/3 hal ini tidak merubah fungsi karena sama dengan di kali 1. Kemudian kita dapat memisalkan agar fungsi berbentuk seperti teorema A yaitu dengan memisalkan 3x.
Misal y=3x maka y –> jika dan. hanya jika x–>0 sehingga :
=3  lim┬(x→0)⁡〖sin⁡3x/3x〗  =3  lim┬(y→0)⁡〖sin⁡y/y〗  =3.1  =3
  1. Selesaikan limit trigonometri berikut :
Nilai
soal 3
Jawab :
kita tidak dapat langsung mensubtitusikan nilai x ke fungsi dikarenakan haslnya akan 0 ini adalah contoh soal limit tak tentu. kita dapat memfaktorkan fungsi penyebut agar kita mendapat (x-2) sehingga berlaku teorema A
=lim┬(x→2)⁡〖sin⁡〖(x-2)〗/((x-2)(x-1))〗 =lim┬(x→2)⁡〖1/((x-1))〗 =1/((2-1)) =1/1 =1
  1. Selesaikan limit trigonometri berikut : Nilai = …soal limit trigoometri 4
Jawab :
jika kita subtitusikan maka nilainya 0 sehingga terlebih dahulu kita harus mengarahkan menjadi bentuk yang apabila kita subtitusikan nilainya ≠0
kita ubah fungsi menggunakan identitas sudut rangkap sehingga
1-cos4x=2sin 22x
=2  lim┬(x→0)⁡〖sin⁡2x/x〗.2/2    sin⁡2x/x =2.2  lim┬(x→0)⁡〖sin⁡2x/2x.sin⁡2x/x  〗 =4  lim┬(x→0)⁡〖1.sin⁡2x/x.2/2〗 =4.2  lim┬(x→0)⁡〖sin⁡2x/2x〗 =8.1 =8
  1. Selesaikan limit trigonometri dibawah ini
soal 5
Jawab :
Karena apabila langsung di subtitusikan menghasilkan 0 maka kita perlu menyelesaikan soal di atas dengan mengubah ke bentuk identitas
Materi Matematika SMA Rumus Barisan dan Deret Geometri

Materi Matematika SMA Rumus Barisan dan Deret Geometri

Materi Matematika SMA Rumus Barisan dan Deret Geometri - Di dalam matematika terdapat dua jenis barisan dan deret. Yang pertama adalah barisan dan deret aritmatika dan yang kedua adalah barisan dan deret geometri. Dalam artikel sebelumnya telah disampaikan materi mengenai Barisan dan Deret Aritmatika, maka kali ini materi yang akan dibahas difokuskan kepada penjelasan mengenai definisi dan rumus - rumus yang digunakan dalam barisan dan deret geometri.

Materi Rumus Barisan dan Deret Geometri Lengkap


Pengertian dan Rumus Barisan Geometri


Barisan geometri didefinisikan sebagai barisan yang tiap - tiap sukunya didapatkan dari hasil perkalian sebelumnya dengan sebuah konstanta tertentu.

Contoh Barisan Geometri

3, 9, 27, 81, 243, ...

Barisan di atas merupakan contoh barisan geometri dimana setiap suku pada barisan tersebut merupakan hasil dari perkalian suku sebelumnya dengan konstanta 3. Maka disimpulkan bahwa rasio pada barisan di atas adalah 3. Rasio pada suatu barisan bisa dirumuskan menjadi :

r = ak + 1/ak

dimana ak adalah sembarang suku dari barisan yang ada. Sementara ak+1 adalah suku selanjutnya setelah ak.

Untuk menentukan suku ke-n dari sebuah barisan geometri, kita bisa menggunakan rumus :

Un = arn-1

dimana a merupakan suku awal dan r adalah nilai rasio dari sebuah barisan geometri.


Perhatikan baik - baik penggunaan rumus di atas dalam menyelesaikan soal :

Contoh Soal dan Pembahasan Barisan Geometri

Contoh Soal 1 :
Sebuah bakteri mampu melakukan pembelahan diri menjadi 4 setiap 12 menit. Berapakah jumlah bakteri yang ada setelah 1 jam apabila sebelumnya terdapat 3 buah bakteri?

Penyelesaian :
a = 3
r = 4
n = 1 jam/12 menit = 60/12 = 5

Masukkan ke dalam rumus
Un = arn-1
U5 = 3 x 45-1
      = 3 x 256
      = 768 bakteri


Pengertian dan Rumus Deret Geometri


Deret geometri bisa diartikan sebagai jumlah dari n suku pertama pada sebuah barisan geometri. Jika suku ke-n dari suatu barisan geometri digambarkan dengan rumus : an = a1rn-1, maka deret geometrinya dijabarkan menjadi :

Sn = a1 + a1r + a1r2 + a1r3 + ... + a1rn-1

Apabila kita mengalikan deret geometri di atas dengan -r, lalu kita jumlahkan hasilnya dengan deret aslinya, maka kita akan memperoleh :

Materi Rumus Barisan dan Deret Geometri Lengkap

Setelah diperoleh Sn - rSn = a1 - a1rn maka kita bisa mengetahui nilai dari suku n pertama dengan cara berikut :

Materi Rumus Barisan dan Deret Geometri Lengkap

Berdasarkan hasil perhitungan di atas, kita bisa menyimpulkan bahwa rumus jumlah n suku pertama pada sebuah barisa geometri adalah :

Materi Rumus Barisan dan Deret Geometri Lengkap


Perhatikan cara penggunaan rumus tersebut pada contoh soal berikut ini :

Contoh Soal Deret Geometri

Contoh Soal 2:
Tentukanlah jumlah 8 suku pertama dari barisan geometri 2, 8, 32, ...

Pembahasan :
a = 2
r = 4
n = 8

Sn = a (1-r) / (1-r)
     = 2 (1-4) / (1-4)
     = 2 (1 - 65536) / (-3)
     = 2 (-65535) / (-3)
     = 2 x 21845
     = 43690


Demikianlah pembahasan materi mengenai Rumus Barisan dan Deret Geometri dilengkapi Dengan Pembahasan Contoh Soal. Semoga kalian bisa memahami pembahasan materi ini dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam menyelesaikan soal - soal yang berkaitan dengan artikel ini. Selamat belajar!
Materi Matematika Matriks

Materi Matematika Matriks

Materi Matematika Matriks- Dalam artikel kali ini akan membahas materi mengenai definisi atau pengertian matriks matematika serta unsur - unsur yang ada di dalamnya. Untuk lebih jelasnya perhatikan baik - baik pembahasan berikut ini:

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap



Definisi Matriks dan Jenis - Jenis Matriks Matematika


Dalam matematika, matriks merupakan kumpulan bilangan, simbol atau ekspresi, berbentuk persegi panjang yang disusun menurut baris dan kolom. Bilangan - bilangan yang terdapat di suatu matriks disebut dengan elemen atau anggota matriks.

Selanjutnya, secara umum matriks bisa diartikan sebagai sebuah susunan atau kumpulan dari beberapa bilangan yang disusun berdasarkan kepada baris dan kolom yang bentuknya persegi panjang. Matriks mempunyai ciri khas khusus dimana biasanya bilangan yang menjadi elemen dari sebuah matriks disusun dengan diapit oleh tanda kurung siku [] namun terkadang ada juga elemen matriks yang diapit oleh tanda kurung biasa ().

Ukuran dari sebuah matriks disebut dengan ordo yang menjelasakan jumlah dari kolom dan baris yang ada di dalam matriks tersebut.

Ukuran dari sebuah matriks bisa disimbolkan dengan rumus sebagai berikut :

Amxn

A = Nama Matriks
m = jumlah baris
n = jumlah kolom
mxn = ordo matriks

Contoh :

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap

Jangan sampai terbalik dalam membaca ordo matriks, ingatlah bahwa ordo matriks merupakan banyaknya baris dikali dengan banyaknya kolom.


Diagonal Utama dan Diagonal Sekunder Pada Matriks

Di dalam materi mengenai matriks juga dikenal dengan istilah diagonal. Terdapat dua jenis diagonal di dalam matriks yaitu diagonal utama dan diagonal sekunder. Diagonal utama merupakan garis miring yang ditarik dari sisi kiri atas matriks menuju sisi kanan bawah matriks. Sementara diagonal sekunder adalah kebalikannya. Seperti bisa dilihat pada gambar di bawah ini :


Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap



Jenis - Jenis Matriks Berdasarkan Banyaknya Baris dan Kolom


Matriks Persegi
Merupakan matriks yang memiliki baris dan kolom yang sama, misalnya 4x4, 2x2, atau 5x5. Sehingga ordonya dialmbangkan n x n.

Matriks Baris
Adalah matriks yang hanya memiliki satu buah baris namun memiliki beberapa kolom. Matriks ini ordonya adalah 1 x n dimana n harus lebih besar dari 1. Contohnya 1 x 2, 1 x 4, 1 x 5, 1 x 6, dan lain sebagainya.

Matriks Kolom
Merupakan kebalikan dari matriks baris. Hanya terdiri dari satu kolom namun memiliki beberapa baris. Ordo dari matriks ini adalah n x 1 dimana n harus lebih besar dari 1. Contohnya adalah 2 x 1, 3 x 1, 4 x 1, 5 x 1, dan lain sebagainya.\

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap


Matriks Mendatar
Adalah matriks yang mempunyai jumlah kolom yang lebih banyak dibandingkan jumlah barisnya. Contohnya adalah 3 x 5, 4 x 6, dan lain sebagainya.

Matriks Tegak
Merupakan kebalikan dari matriks mendatar dimana jumlah barisnya lebih banyak dibandingkan jumlah kolomnya. Contohnya adalah 6 x 3, 4 x 2, 8 x 5, dan lain sebagainya.

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap



Jenis Matriks Berdasarkan Pada Pola Elemennya


Matriks Nol
Merupakan matriks dengan ordo m x n dimana seluruh elemennya memiliki nilai nol.

Matriks Diagonal
Merupakan matriks persegi yang elemennya bernilai nol kecuali pada diagonal utamanya.

Matriks Identitas
Adalah matriks yang diagonal utamanya di isi dengan elemen bernilai 1 sementara elemen yang lain nilainya adalah nol.

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap

Matriks Segitiga Atas
Adalah matriks yang keseluruhan nilai di bawah diagonal utamanya adalah nol.

Matriks Segitiga Bawah
Merupakan kebalikan dari matriks segitiga atas dimana seluruh elemen yang ada di atas diagonal utamanya bernilai nol.

Matriks Simetris
Merupakan sebuah matriks dimana elemen yang ada di atas dan di bawah diagonal utamanya memiliki susunan nilai yang sama.

Matriks Skalar
Merupakan matriks yang memiliki elemen diagonal utama bernilai sama sementara elemen yang lain nilainya adalah nol.

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap


Demikianlah pembahasan materi mengenai Pengertian dan Jenis-jenis Matriks Matematika Lengkap. Semoga artikel ini bisa memberikan pengetahuan yang baik bagi kalian terutama tentang matriks matematika. Selamat belajar!