Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan
Tampilkan postingan dengan label Kelas X. Tampilkan semua postingan
Tampilkan postingan dengan label Kelas X. Tampilkan semua postingan
Cara Menyelesaikan Persamaan Linear  Tiga Variabel

Cara Menyelesaikan Persamaan Linear Tiga Variabel

Kembali lagi bersama saya di blog tetamatika, tetamatika memberikan berbagai administrasi guru, materi ajar, media pembelajaran yang berkaitan dengan pelajaran matematika. Kali ini saya akan membahas tentang materi Sistem Persamaan Linear Dua Variabel dan Tiga Variabel Kelas X Semester 1Sistem persamaan linear 3 variabel, merupakan himpunan 3 buah persamaan dengan variabel sebanyak 3. Bentuk ini satu tingkat lebih rumit dibandingkan sistem persamaan linear 2 variabel
Metoda meyelesaikan persamaan

1. Metoda Eliminasi

2. Metoda subtitusi

Metoda Eliminasi

Supaya lebih mudah langsung saja kita masuk ke contoh-contoh

Contoh soal 1 :

2x + 3y – z = 20
3x + 2y + z = 20
x + 4y + 2z = 15
Jawab :
Ketiga persamaan bisa kita beri nama persamaan (1), (2), dan (3)
2x + 3y – z = 20 ………………………..(1)
3x + 2y + z = 20 ………………………..(2)
x + 4y + 2z = 15 ………………………..(3)
Sistem persamaan ini harus kita sederhanakan menjadi sistem persamaan linear 2 variabel. Untuk itu kita eliminasi variabel z
Sekarang persamaan (1) dan (2) kita jumlahkan
2x + 3y – z = 20
3x + 2y + z = 20_____   +
5x + 5y = 40
x + y = 8 ………………….(4)
Selanjutnya persamaan (2) dikali (2) dan persamaan (3) dikali (1) sehingga diperoleh
6x + 4y + 2z = 40
x + 4y + 2z = 15____  _
5x = 25
x = 5
Nilai x ini kita subtitusi ke persamaan (4) sehingga
x + y = 8
(5) + y = 8
y = 3
selanjutnya nilai x dan y yang ada kita subtitusikan ke persamaan (2)
3x + 2y + z = 20
3.(5) + 2.(3) + z = 20
15 + 6 + z = 20
z = -1
Jadi, himpunan penyelesaiannya adalah {(5, 3, -1)}


Contoh soal 2 :
Tentukan himpunan penyelesaian dari
3x + 4y – 3z = 3
2x – y + 4z = 21
5x + 2y + 6z = 46
Jawab :
Agar lebih mudah, ketiga persamaan kita beri nama (1), (2), dan (3)
3x + 4y – 3z = 3  …………………………….(1)
2x – y + 4z = 21  …………………………….(2)
5x + 2y + 6z = 46 …………………………….(3)
Selanjutnya persamaan (1) dikali 1 dan persamaan (2) dikali 4, sehingga diperoleh
3x + 4y – 3z = 3    |1| → 3x + 4y – 3z = 3
2x – y + 4z = 21    |4| → 8x – 4y+16z = 84    +
.                                  11x + 13z = 87 ……………..(4)
Berikutnya persamaan (3) dikali 1 dan persamaan (2) dikali 2, sehingga diperoleh
5x + 2y + 6z = 46    |1| → 5x + 2y + 6z = 46
2x – y + 4z = 21      |2| → 4x – 2y + 8z = 42     +
.                                    9x + 14z = 88 …………..(5)
Sekarang persamaan (5) dikali 11 dan persamaan (4) dikali 9 sehingga diperoleh
9x + 14z = 88   |11|   99x +154z = 968
11x + 13z = 87  |9|    99x + 117z=783       _
.                                      37z = 185
.                                          z = 5
Nilai z=5 kita subtitusi ke persamaan (4)
11x + 13z = 87
11x + 13.(5) = 87
11x + 65 = 87
11x = 22
x = 2
Nilai x=2 dan z=5 kita subtitusikan ke persamaan (3) sehingga
5x +2y +6z = 46
5.(2) +2y +6.(5) = 46
10 + 2y + 30 = 46
2y = 6
y = 3
Jadi, himpunan penyelesaiannya adalah {(2, 3, 5)}


Metoda subtitusi

Contoh soal 3

Himpunnan penyelesaian sistem persamaan
2x + 5y + 4z = 28
3x – 2y + 5z = 19
6x + 3y – 2z = 4
adalah …
Jawab :
Sekarang setiap persamaan kita beri nama (1), (2), dan (3)
2x + 5y + 4z = 28 ……………………………………..(1)
3x – 2y + 5z = 19……………………………………….(2)
6x + 3y – 2z = 4…………………………………………(3)
Persamaan (1) bisa kita ubah sebagai berikut
2x + 5y + 4z = 28
4z = 28 – 2x – 5y
 ………………………………………..(4)
Selanjutnya persamaan (4) kita subtitusikan ke persamaan (2) sehingga
3x – 2y + 5z = 19
Jika kedua ruas dikali dengan 4 maka diperoleh
12x – 8y + 140 – 10x – 25y = 76
2x -33y = -64 ……………………………………….(5)
Sekarang persamaan (4) kita subtitusikan ke persamaan (3) sehingga
6x + 3y – 2z = 4
Jika kedua ruas dikali 4 maka
24x + 12y – 56 + 4x + 10y = 16
28x + 22y = 72
14x + 11y = 36
11y = 36 – 14x
…………………………………………(6)
Sekarang persamaan (6) kita subtitusikan ke persamaan (5) sehingga
2x -33y = -64
2x – 108 + 42x = -64
44x = 44
x=1
Jadi, himpunan penyelesaiaannya adalah {(1, 2, 4)}
Soal Latihan Materi Logaritma

Soal Latihan Materi Logaritma

Setelah kalian membaca materi LOGARITMA disini sekarang akan disajikan latihan soal logaritma yang bisa kalian coba kerjakan, Soal-soal ini diambil dari beberapa sumber, Yuk, Coba kerjakan..

Soal Latihan Materi Logaritma


1. Apabila ^7 \log 2 = a dan ^2 \log 3 = b, maka ^6 \log 98 adalah …

a. \frac{a}{a+b}

b. \frac{a+2}{b+1}

c. \frac{a+2}{a(b+1)}

d. \frac{a+1}{b+2}

e. \frac{a+2}{b(a+1)}
2. Jika ^a \log (1 - ^3 \log {frac{1}{27}}) = 2, maka nilai a yang memenuhi adalah …

a. \frac{1}{8}

b. 2

c. \frac{1}{4}

d. 3

e. 4
3. Nilai x yang memenuhi persamaan ^{(5-4x)} \log (x^2 - 7x - 5) = log 10 adalah …

a. 4

b. 3

c. -2

d. -3

e. -4
4. Jika x_1 dan x_2 akar-akar persamaan \log(2x - \frac{5}{x} +13) = 1, maka nilai x_1 + x_2 = ...

a. \frac{5}{2}

b. \frac{3}{2}

c. - \frac{3}{2}

d. - \frac{5}{2}

e. - \frac{13}{2}
5. Jika x_1 dan x_2 adalah akar-akar persamaan (^3 \log x)^2 - 3(^3 \log x) + 2 = 0, maka x_1 . x_2 = ...

a. 2

b. 3

c. 8

d. 24

e. 27

Nah itulah tadi 5 soal yang bisa kalian coba kerjakan sebagai latihan… Cari dan kerjakan juga latihan soal dari sumber yang lain, seperti buku latihan siswa, buku paket, dll
Materi Matematika SMA Permutasi dan Kombinasi

Materi Matematika SMA Permutasi dan Kombinasi

Materi Matematika SMA Permutasi dan Kombinasi - Materi permutasi dan kombinasi matematika berkaitan dengan materi peluang yang bisa kalian akses pada artikel yang membahas tentang Pengertian dan Rumus Peluang Matematika.

Penjelasan Perbedaan Permutasi dan Kombinasi Matematika, Contoh Soal dan Pembahasan Lengkap


Pengertian Permutasi dan Kombinasi Matematika

Permutasi

Dalam ilmu matematika permutasi diartikan sebagai sebuah konsep penyusunan sekumpulan objek/angka menjadi beberapa urutan berbeda tanpa mengalami pengulangan.

Di dalam permutasi, urutan sangat diperhatikan. Setiap objek yang dihasilkan harus berbeda antara satu dengan yang lain. Sebagai contoh, urutan huruf {ABC} berbeda dengan {CAB} begitu juga dengan {BAC} dan {ACB}.
Rumus untuk mencari banyaknya permutasi n unsur jika disusun pada unsur k dimana k n adalah :

Rumus Permutasi

P(n,k) =  n!  
            (n-k)!

Untuk memahami rumus tersebut, perhatikan pembahasan soal berikut ini :

Contoh Soal 1 :
Disebuah kelas terdapat 4 orang siswa yang dicalonkan untuk mengisi posisi bendahara dan sekretaris. Tentukan banyaknya cara yang bisa digunakan untuk mengisi posisi tersebut!

Penyelesaian :
Soal di atas bisa dituliskan sebagai permutasi P(4,2), n(banyaknya guru) = 4 k (jumlah posisi) = 2
Kita masukkan ke dalam rumus :

P(4,2) =   4!     = 4 x 3 x 2 x 1 = 24 = 12
             (4-2)!          2 x 1            2



Contoh Soal 2 :
Berapakah banyaknya bilangan yang dibentuk dari 2 angka berbeda yang bisa kita susun dari urutan angka 4, 8, 2, 3, dan 5?

Penyelesaian :
Pertanyaan di atas bisa disimpulkan sebagai permutasi yang terdiri dari 2 unsur yang dipilih dari 5 unsur, maka bisa dituliskan sebagai P(5,2). Lalu, kita masukkan ke dalam rumus :

P(5,2) =   5!    = 5 x 4 x 3 x 2 x 1 = 120 = 20
             (5-2)!           3 x 2 x 1             6

Maka ada 20 cara yang bisa dilakukan untuk menyusun bilangan tersebut menjadi 2 angka yang berbeda - beda (48, 42, 43, 45, 84, 82, 83, 85, 24, 28, 23, 25, 34, 38, 32, 35, 54, 53, 52).

Kombinasi

Kombinasi merupakan sebuah kumpulan dari sebagian atau seluruh objek dengan tidak memperhatikan urutannya. Di dalam kombinasi {AB} dianggap sama dengan {BA} sehingga sebuah kombinasi dari dua objek yang sama tidak dapat terulang.

Rumus kombinasi dari suatu himpunan yang mempunyai n elemen bisa dituliskan sebagai berikut :

Rumus Kombinasi

C(n,r) = nCr = nCr =     n!    
                                   r!(n-r)!

Perhatikan baik - baik penggunaan rumus tersebut untuk menyelesaikan soal - soal di bawah ini :

Contoh Soal :
Manuel Pelegrini membawa 16 pemain saat Manchester City melawan Liverpool di Etihad Stadium. 11 orang diantaranya akan dipilih untuk bermain pada babak pertama. Jika kita tidak memperhatikan posisi pemain, berapakah banyaknya cara yang bisa diambil oleh pelatih untuk memilih pemain?

Penyelesaian :
Karena tidak mementingkan posisi pemain, maka kita gunakan rumus kombinasi :

16C11 =      16         = 16 x 15 x 14 x 13 x 12 x 11!
            11!(16-11)!                   11!5!

     =       524160        = 524160 = 4368
        5 x 4 x 3 x 2 x 1       120


Contoh Soal :
Sebuah ember berisi 1 buah alpukat, 1 buah pir, 1 buah jeruk dan 1 buah salak. Berapakah banyaknya kombinasi yang tersusun dari 3 macam buah?

Penyelesaian :
Diketahui n = 4 dan r = 3, maka :

4C=    4!      = 4 x 3 x 2 x 1 =      24    = 24 = 4
         3!(4-3)!           3!1!           3 x 2 x 1    6


Demikianlah pembahasan materi mengenai Materi Matematika SMA Permutasi dan Kombinasi. Semoga kalian bisa memahami penjelasan dan contoh - contoh soal yang diberikan dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!
Materi Matematika SMA Fungsi Komposisi dan Fungsi Invers

Materi Matematika SMA Fungsi Komposisi dan Fungsi Invers

Materi Matematika SMA Fungsi Komposisi dan Fungsi Invers - Sebelum mempelajari materi ini, sebaiknya kalian memahami Teori dan Konsep Himpunan Matematika. Fungsi atau pemetaan termasuk ke dalam relasi karena di dalam sebuah1 fungsi dari himpunan A ke himpunan B terdapat relasi khusus yang memasangkan tiap - tiap anggota yang ada pada himpunan A dengan tiap - tiap anggota pada himpunan B. Agar bisa menyelesaikan soal - soal mengenai fungsi komposisi dan invers tentu kita harus memahami dengan baik konsep ataupun prinsip dasar dari fungsi komposisi dan fungsi invers.

Pembahasan Fungsi Komposisi dan Fungsi Invers

Pengertian Fungsi Komposisi dan Fungsi Invers


Fungsi Komposisi

Dari dua jenis fungsi f(x) dan g(x) kita bisa membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. Operasi komposisi bisa dilambangkan dengan "o" (komposisi/bundaran), fungsi baru yang bisa kita bentuk dari f(x) dan g(x) adalah :

(g o f) (x) artinya f dimasukkan ke g
(f o g) (x) artinya g dimasukkan ke f


Contoh Soal 1:
Diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...

Penyelesaian :
(f o g)(x) = g dimasukkan ke f menggantikan x
               = 3(2x) - 4
               = 6x - 4

(g o f)(x) = f dimasukkan ke g menggantikan x
               = 2(3x - 4)
               = 6x - 8



Syarat Fungsi Komposisi

Contoh Soal 2:
Misal fungsi f dan g dinyatakan dalam pasangan terurut :
f = {(-1,4), (1,6), (3,3), (5,5)}
g = {(4,5), (5,1), (6,-1), (7,3)}

Tentukan :
a. f o g                                d. (f o g) (2)
b. g o f                                e. (g o f) (1)
c. (f o g) (4)                         f. (g o f) (4)


Penyelesaian :
Pasangan terurut dari fungsi f dan g bisa digambarkan dengan diagram panah berikut ini :
a. (f o g) = {(4,5), (5,6), (6,4), (7,3)}
b. (g o f) = {(-1,5), (1,-1), (3,3), (5,1)}
c. (f o g) (4) = 5
d. (f o g) (2) = tidak didefinisikan
e. (g o f) (1) = -1


Sifat - Sifat Fungsi Komposisi

Fungsi Komposisi memiliki beberapa sifat, diantaranya :

Tidak Komutatif
(g o f)(x) = (f o g)(x)

Asosiatif
(f o (g o h))(x) = ((f o g) o h)(x))

Fungsi Identitas I(x) = x
(f o I(x) = (I o F)(x) = f(x)


Cara Menentukan Fungsi Bila Fungsi Komposisi dan Fungsi Yang Lain Diketahui


Misalkan jika fungsi f dan fungsi komposisi (f o g) atau (g o f) telah diketahui maka kita bisa menentukan fungsi g demikian juga sebaliknya.

Contoh Soal 3 :
Misal fungsi komposisi (f o g)(x) = -4x + 4 dan f(x) = 2x + 2
Tentukan fungsi g(x)!

Penyelesaian :
(f o g) (x)    = -4x + 4
f (g (x))       = -4x + 4
2 (g (x)) + 2 = -4x + 4
2 g (x)         = -4x + 2
   g (x)         = -4x + 2
                           2
   g (x)         = -2x + 1
Jadi, fungsi g (x) = -2x + 1



Fungsi Invers

Apabila fungsi dari himpunan A ke B dinyatakan dengan f, maka invers dari fungsi f merupakan sebuah relasi dari himpunan A ke B. Sehingga, fungsi invers dari f : A -> B adalah f-1 :B -> A. Bisa disimpulkan bahwa daerah hasil dari f-1(x) merupakan daerah asal bagi f(x) begitupun sebaliknya.

Cara Menentukan Fungsi Invers Bila Fungsi f(x) Telah Diketahui :

Pertama
Ubah persamaan y = f (x) menjadi bentuk x sebagai fungsi dari y

Kedua
Hasil perubahan bentuk x sebagai fungsi y itu dinamakan sebagai f-1(y)

Ketiga
Ubah y menjadi x[f-1(y) menjadi f-1(x)]


Contoh Soal :

Pembahasan Fungsi Komposisi dan Fungsi Invers


Demikianlah pembahasan materi mengenai Fungsi Komposisi dan Fungsi Invers. Semoga kalian bisa memahami penjelasan dan contoh soal yang diberikan dengan mudah sehingga artikel ini bisa membantu kalain dalam menyelesaikan soal - soal yang berkaitan dengan materi ini. Selamat belajar!
Materi Matenatika SMA Kelas X Bilangan Pangkat

Materi Matenatika SMA Kelas X Bilangan Pangkat

Materi Matenatika SMA Kelas X Bilangan Pangkat - Dalam artikel sebelumnya Seribu Rumus Matematikatelah menyampaikan materi mengenai Pengertian, Operasi, Rumus dan Sifat-sifat Bilangan Berpangkat. Pembahasan kali ini masih memberikan penjelasan mengenai sifat - sifat dari masing - masing bentuk bilangan berpangkat. Bilangan berpangkat ada beberapa jenis, mulai dari bilangan berpangkat bulat positif, bilangan berpangkat negatif, dan ada juga bilangan berpangkat nol. Artikel ini akan membahas lebih fokus pada bilangan berpangkat bulat positif lalu dilanjutkan dengan sifaf pembagiannya.

Penjelasan Sifat-sifat Bilangan Pangkat Bulat Positif SMA Kelas X

Sifat Perkalian Bilangan Berpangkat Bilangan Bulat Positif


Agar kalian bisa memahami dengan baik, perhatikan operasi hitung berikut ini :

43 x 46 = (4 x 4 x 4) x (4 x 4 x 4 x 4 x 4 x 4)
                = 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4
                = 49

Maka disimpulkan bahwa :

43 x 46 = 43+6

Penjelasan perhitungan di atas sesuai dengan sifat :

am x an = am+n

Dimana a merupakan bilangan rasional, sedangkan m dan n merupakan bilangan bulat positif.

Sifat perkalian di atas akan lebih mudah dimengerti dengan mengamati contoh soal dan pembahasannya berikut ini :

Contoh Soal 1 :
Tentukan hasil perkalian dari bilangan berpangkat di bawah ini dengan menggunakan sifat perkalian bilangan berpangkat bulat positif :
a. 35 x 32
b. (-4)3 x (-4)2
c. 53 x 64
d. 7y2 x y3

Pembahasan :

a. 35 x 32 = 35+2
                 = 37 = 2187

b. (-4)3 x (-4)= (-4)3+2
                        = (-4)5 = -1024

c. Karena bilangan pokoknya berbeda (5 dan 6), kita tidak bisa menyederhanakan perkalian ini dengan sifat perkalian bilangan berpangkat :
53 x 64 = 125 x 1296 = 162000


d.  7y2 x y3 = 7y2+3
                    = 7y5


Sifat Pembagian Bilangan Berpangkat Bilangan Bulat Positif

Sama halnya dengan sifat perkalian, pada sifat pembagian bilangan berpangkat posisitf kita juga harus memperhatikan dan mengamati konsep dasarnya terlebih dahulu :

45/42 = (4 x 4 x 4 x 4 x 4) / (4 x 4)
             = 4 x 4 x 4
             = 43
45/4= 45-2

Maka bisa disimpulkan bahwa :

45/4= 45-2

Konsep perhitungan tersebut sesuai dengan sifat :

am / an = am-n

Dimana a merupakan bilangan rasional yang tidak sama dengan 0 sedangkan m dan n merupakan bilangan bulat positif dengan syarat m lebih besar daripada n.

Berikut penjelasan contoh soal tentang sifat di atas :

Contoh Soal 2 :
Tentukan hasil pembagian dari bilangan berpangkat di bawah ini dengan menggunakan sifat pembagian bilangan berpangkat bulat positif :

a . 28/23
b. -37/-35
c. 3q6/q3

Pembahasan :

a. 28/23 = 28-3
                =25
                = 32

b. -37/-3= -37-5
                   = -32
                 = 9

c. 3q6/q= 3q6-3
                  = 3q3


Demikianlah pembahasan materi mengenai Materi Matenatika SMA Kelas X Bilangan PangkatSemoga kalian bisa memahami penjelasan dan contoh - contoh soal di atas dengan mudah, sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!