Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Cara Menyelesaikan Persamaan Linear Tiga Variabel

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Cara Menyelesaikan Persamaan Linear Tiga Variabel, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Cara Menyelesaikan Persamaan Linear Tiga Variabel Selengkapnya.

lihat juga


Cara Menyelesaikan Persamaan Linear Tiga Variabel

Kembali lagi bersama saya di blog tetamatika, tetamatika memberikan berbagai administrasi guru, materi ajar, media pembelajaran yang berkaitan dengan pelajaran matematika. Kali ini saya akan membahas tentang materi Sistem Persamaan Linear Dua Variabel dan Tiga Variabel Kelas X Semester 1Sistem persamaan linear 3 variabel, merupakan himpunan 3 buah persamaan dengan variabel sebanyak 3. Bentuk ini satu tingkat lebih rumit dibandingkan sistem persamaan linear 2 variabel
Metoda meyelesaikan persamaan

1. Metoda Eliminasi

2. Metoda subtitusi

Metoda Eliminasi

Supaya lebih mudah langsung saja kita masuk ke contoh-contoh

Contoh soal 1 :

2x + 3y – z = 20
3x + 2y + z = 20
x + 4y + 2z = 15
Jawab :
Ketiga persamaan bisa kita beri nama persamaan (1), (2), dan (3)
2x + 3y – z = 20 ………………………..(1)
3x + 2y + z = 20 ………………………..(2)
x + 4y + 2z = 15 ………………………..(3)
Sistem persamaan ini harus kita sederhanakan menjadi sistem persamaan linear 2 variabel. Untuk itu kita eliminasi variabel z
Sekarang persamaan (1) dan (2) kita jumlahkan
2x + 3y – z = 20
3x + 2y + z = 20_____   +
5x + 5y = 40
x + y = 8 ………………….(4)
Selanjutnya persamaan (2) dikali (2) dan persamaan (3) dikali (1) sehingga diperoleh
6x + 4y + 2z = 40
x + 4y + 2z = 15____  _
5x = 25
x = 5
Nilai x ini kita subtitusi ke persamaan (4) sehingga
x + y = 8
(5) + y = 8
y = 3
selanjutnya nilai x dan y yang ada kita subtitusikan ke persamaan (2)
3x + 2y + z = 20
3.(5) + 2.(3) + z = 20
15 + 6 + z = 20
z = -1
Jadi, himpunan penyelesaiannya adalah {(5, 3, -1)}


Contoh soal 2 :
Tentukan himpunan penyelesaian dari
3x + 4y – 3z = 3
2x – y + 4z = 21
5x + 2y + 6z = 46
Jawab :
Agar lebih mudah, ketiga persamaan kita beri nama (1), (2), dan (3)
3x + 4y – 3z = 3  …………………………….(1)
2x – y + 4z = 21  …………………………….(2)
5x + 2y + 6z = 46 …………………………….(3)
Selanjutnya persamaan (1) dikali 1 dan persamaan (2) dikali 4, sehingga diperoleh
3x + 4y – 3z = 3    |1| → 3x + 4y – 3z = 3
2x – y + 4z = 21    |4| → 8x – 4y+16z = 84    +
.                                  11x + 13z = 87 ……………..(4)
Berikutnya persamaan (3) dikali 1 dan persamaan (2) dikali 2, sehingga diperoleh
5x + 2y + 6z = 46    |1| → 5x + 2y + 6z = 46
2x – y + 4z = 21      |2| → 4x – 2y + 8z = 42     +
.                                    9x + 14z = 88 …………..(5)
Sekarang persamaan (5) dikali 11 dan persamaan (4) dikali 9 sehingga diperoleh
9x + 14z = 88   |11|   99x +154z = 968
11x + 13z = 87  |9|    99x + 117z=783       _
.                                      37z = 185
.                                          z = 5
Nilai z=5 kita subtitusi ke persamaan (4)
11x + 13z = 87
11x + 13.(5) = 87
11x + 65 = 87
11x = 22
x = 2
Nilai x=2 dan z=5 kita subtitusikan ke persamaan (3) sehingga
5x +2y +6z = 46
5.(2) +2y +6.(5) = 46
10 + 2y + 30 = 46
2y = 6
y = 3
Jadi, himpunan penyelesaiannya adalah {(2, 3, 5)}


Metoda subtitusi

Contoh soal 3

Himpunnan penyelesaian sistem persamaan
2x + 5y + 4z = 28
3x – 2y + 5z = 19
6x + 3y – 2z = 4
adalah …
Jawab :
Sekarang setiap persamaan kita beri nama (1), (2), dan (3)
2x + 5y + 4z = 28 ……………………………………..(1)
3x – 2y + 5z = 19……………………………………….(2)
6x + 3y – 2z = 4…………………………………………(3)
Persamaan (1) bisa kita ubah sebagai berikut
2x + 5y + 4z = 28
4z = 28 – 2x – 5y
 ………………………………………..(4)
Selanjutnya persamaan (4) kita subtitusikan ke persamaan (2) sehingga
3x – 2y + 5z = 19
Jika kedua ruas dikali dengan 4 maka diperoleh
12x – 8y + 140 – 10x – 25y = 76
2x -33y = -64 ……………………………………….(5)
Sekarang persamaan (4) kita subtitusikan ke persamaan (3) sehingga
6x + 3y – 2z = 4
Jika kedua ruas dikali 4 maka
24x + 12y – 56 + 4x + 10y = 16
28x + 22y = 72
14x + 11y = 36
11y = 36 – 14x
…………………………………………(6)
Sekarang persamaan (6) kita subtitusikan ke persamaan (5) sehingga
2x -33y = -64
2x – 108 + 42x = -64
44x = 44
x=1
Jadi, himpunan penyelesaiaannya adalah {(1, 2, 4)}


Cara Menyelesaikan Persamaan Linear Tiga Variabel
Demikianlah Pembahasan Kita Kali ini Mengenai Cara Menyelesaikan Persamaan Linear Tiga Variabel,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2017/07/cara-menyelesaikan-persamaan-linear.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

Tidak ada komentar