Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Soal Dan Pembahasan Barisan dan Deret Geometri

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Soal Dan Pembahasan Barisan dan Deret Geometri, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Soal Dan Pembahasan Barisan dan Deret Geometri Selengkapnya.

lihat juga


Soal Dan Pembahasan Barisan dan Deret Geometri

Bagi kalian yang merasa kesusahan dalam mempelajari rumus- rumus matematika dan tata cara pengerjaan suatu soal, jangan bingung and don’t worry about it. Karena sekarang sudah banyak sekali artikel yang akan menjelaskan tata cara dan contoh-contoh soal yang sangat mudah di mengerti. Misalnya artikel ini, disini akan dijelaskan pengertian dan maksud dari materi yang akan dibahas dan dimateri ini akan dijelaskan rumus- rumus serta contoh soal yang sangat mudah dimengerti pastinya. Ada juga beberapa materi yang memiliki cara cepat dalam proses pengerjaannya.

Sebelumnya kita sudah pernah membahas tentang materi pengaplikasian barisan dan deret aritmetika, dan sekarang kita akan membahas materi tentang barisan dan deret geometri. Karena kita sudah mengetahui dasar dari barisan, deret, dan geometri, maka kita akan lebih mudah dalam membahas materi pengaplikasian barisan dan deret geometri kali ini. Biasanya materi ini dibahas pada jenjang SMP kelas 3.

So, tanpa banyak basa-basi lagi, silahkan diamati, dicermati, dipahami dengan hati, pikiran, dan jiwa yang tenang…. Ingin tahu lebih lagi tentang math?? Yukkks, lanjuutt ke materi kali ini… 
Dalam kehidupan sehari-hari, anda sering dihadapkan pada masalah nyata yang model matematikanya dapat diterjemahkan dalam bentuk barisan dan deret geometri. Langkah-langkah dalam penyelesaian masalah yang berkaitan dengan barisan dan deret geometri sebagai berikut.
  1. Nyatakan besaran yang ada dalam masalah sebagai variable dalam barisan atau deret. Variable-variabel ini dilambangkan dengan huruf-huruf, misalnya:
  • a sebagai suku pertama
  • b sebagai beda
  • r sebagai rasio
  1. rumuskan barisan atau deret yang merupakan model matematika dari masalah.
  2. Tentukan penyelesaian dari model matematika yang diperoleh pada langkah kedua.
  3. Tafsirkan hasil yang diperoleh terhadap masalah semula. 
Contoh :
1. Penduduk suatu kota adalah 10.000 orang.setiap tahun karena kelahiran dan urban penduduk bertambah 3%. Tentukan jumlah penduduk pada akhir tahun ke-10 !
Jawab :
Penduduk pada awal tahun pertama adalah U1 = 10.000

Pada awal tahun ke-2 adalah :
U3 = 10000 + 3/100 . 10000 = 10000 (1 + 3/100)

Pada awal tahun ke-3 adalah :
U3 = U2 + 3/100 U2 = U(1 + 3/100) = 10000(1 + 3/100)( 1 + 3/100) = 10000(1 + 3/100)2

Pada awal tahun ke-4 adalah :
U4 = U3 + 3/100 U3 = U(1 + 3/100) = 10000(1 + 3/100)2( 1 + 3/100) = 10000(1 + 3/100)3

Jika proses ini dilanjutkan, maka akan diperoleh : Un = 10000(1 + 3/100)n-1
Dengan demikian jumlah penduduk pada akhir tahun ke-10 atau awal tahun ke-11 adalah :
U11 = 10000(1 + 3/100)11-1 = 10000(1 + 3/100)10 = 10000 (1,03)10 = 13.439,16
Jadi, jumlah penduduk pada akhir tahun ke-10 sekitar 13.439 orang.

2. Pak kartono adalah seorang produsen. Pak kartono berhasil meningkatkan unit produksinya 10% setahun. Jika hasil produksi pada awal tahun ke-5 adalah 14.641 unit, maka hitunglah hasil produksi pada awal tahun ketiga !
Jawab :
U1 = a
b = 10% . U1 = 10/100 . a = 1/10 a = 0,1a
U2 = U1 + b = a + 0,1a = 1,1a
U3 = a(1,1)2
U4 = a(1,1)3
U5 = a(1,1)4
U5 = 14.641, maka

U5 = a(1,1)4
14.641 = a . 1,4641
a = 10000

U3 = a(1,1)2 = 10000 . 1,21 = 12100
Jadi, hasil produksi pada awal tahun ketiga adalah 12100 unit.


Soal Dan Pembahasan Barisan dan Deret Geometri
Demikianlah Pembahasan Kita Kali ini Mengenai Soal Dan Pembahasan Barisan dan Deret Geometri,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2017/06/soal-dan-pembahasan-barisan-dan-deret.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

Tidak ada komentar