Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Contoh Soal dan Penyelesaian Logika Matematika

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Contoh Soal dan Penyelesaian Logika Matematika, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Contoh Soal dan Penyelesaian Logika Matematika Selengkapnya.

lihat juga


Contoh Soal dan Penyelesaian Logika Matematika

Pada kesempatan kali ini, saya akan memberikan lagi beberapa contoh dan penyelesaian dari logika matematika. Bagi teman-teman yang kurang paham materi tentang "Logika Matematika", teman-teman bisa latihan dari contoh-contoh soal yang saya bagikan kali ini. Sebelum mencoba mengerjakan soal-soalnya, ada baiknya teman-teman pelajari terlebih dahulu materinya.

Bagian 1 Proposisi dan Tabel Kebenaran

Nomor 1
Soal: Diketahui proposisi q--->r bernilai salah. Tentukan nilai kebenaran dari (pvq)--->r
Jawab:
Proposisi  q--->r bernilai salah jika dan hanya jika q benar dan r salah.
Tabel kebenaran memberikan sebagai berikut
Mathematics
Terlihat bahwa proposisi (p v q) ---> r bernilai salah.

Nomor 2
Soal: Jika proposisi p <--> q bernilai salah, tentukan nilai kebenaran dari proposisi (p v q) ---> (p ^ q)
Jawab:
Proposisi p <--> q bernilai salaj jika dan hanya jika p dan q memiliki nilai kebenaran yang berbeda, sehingga dapat memberikan tabel kebenaran sebagai berikut
Mathematics
Jadi (p v q) ---> (p ^ q) bernilai salah.

Nomor 3
Soal: Diketahui proposisi p v (p ^ q) bernilai benar. Tentukan nilai kebenaran dari:
(a) Proposisi p
(b) Proposisi -p ^ q
Jawab:
(a) Apabila dikerjakan berdasarkan dalil penghapusan, maka akan diperoleh sebagai berikut:
p v (p ^ q) = p
Dengan demikian proposisi p bernilai benar. Atau apabila disajikan dalam tabel kebenaran akan tampak sebagai berikut:
Mathematics

dari tabel yang diberikan di atas. Dapat dilihat bahwa p v (p ^ q) bernilai benar maka p bernilai benar (perhatikan kotak yang diberi warna hijau).

(b) Dengan tabel kebenaran dapat di peroleh sebagai berikut:
Mathematics

dari tabel yang diberikan di atas. Dapat dilihat bahwa -p  ^ q bernilai salah maka p bernilai benar (perhatikan kotak yang diberi warna ungu).

Bagian 2 Dalil Kesetaraan

Nomor 1
Soal: Dengan menggunakan dalil kesetaraan, buktikan bahwa [(p --> -p) ^ -p] --> -p adalah suatu tautologi.
Jawab:
[(p --> -p) ^ -p] --> -p 
= [(-p v -p) ^ -p] --> -p
=(-p ^ -p) --> -p
= p v -p
= i 

Nomor 2
Soal: Dengan menggunakan dalil kesetaraan, buktikan bahwa proposisi [(q --> p) ^ q] --> p adalah suatu tautologi.
Jawab:
[(q --> p) ^ q] --> p
= - [(-q v p) ^ q] v p
= (q ^ -p) v -q v p
= (q v -q v p) ^ (-p v -q v p)
= (i v p) ^ (i v -q)
= i ^ i
= i

Nomor 3
Soal: Dengan menggunakan dalil-dalil kesetaraan, periksa apakah proposisi berikut tautologi:
[-(p v q) v (-p ^ q)] --> -p
Jawab:
[-(p v q) v (-p ^ q)] --> -p
= [(-p ^ -q) v (-p ^ q)] --> -p
= [-p ^ (-q v q)] --> -p
= (-p ^ i) --> -p
= -p --> -p
= p v -p
= i

Bagian 3 Argumen

Nomor 1
Soal: Diberikan argumen sebagai berikut. Jika Iis dan Ees berada di lobi asrama maka keduanya sedang belajar pelajaran matematika. Ternyata, setidaknya ada satu orang yang tidak sedang belajar pelajaran matematika, Dapat disimpulkan bahwa setidaknya ada satu orang yang tidak berada di lobi asrama.
Tentukan:
(a) Lambangkan argumen diatas
(b) Periksa kesahan argumen di atas dengan menggunakan dalil-dalil kesetaraan
Jawab:
(a) Misalkan:
p : Iis berada di lobi asrama
q : Ees berada di lobi asrama
r : Iis sedang belajar pelajaran matematika
s : Ees sedang belajar pelajaran matematika

Argumen:

H1: (p ^ q) --> (r ^ s)
H2: -r v -s
---------------------------
K : -p v -q

(b) Dengan dalil-dalil kesetaraan diperoleh sebagai berikut:

(H1 ^ H2) --> K
= -(H1 ^ H2) v K
= -H1 v -H2 v K
= -[(p ^ q) --> (r ^ s)] v (r ^ s) v -(p ^ q)
= -[-(p ^ q) v (r ^ s)] v (r ^ s) v -(p ^ q)
= [(p ^ q) ^ -(r ^ s)] v -[-(r ^ s) ^ (p ^ q)]
= t v -t ; dengan t = [(p ^ q) ^ -(r ^ s)]
= i
Karena implikasinya merupakan tautologi maka argumen tersebut sah.

Nomor 2
Soal: Perhatikan argumen berikut. Jika Ana di terima di salah satu sekolah menengah atas maka Ana belajar matematika enam jam perhari. Jika Ana belajar matematika enam jam perhari maka Ana lulus mata pelajaran matematika. Ternyata Ana belajar matematika enam jam per hari. Kesimpulannya, Ana lulus mata pelajaran matematika. Dengan menggunakan dalil-dalil kesetaraan, periksa kesahan argumen tersebut.
Jawab:
Misalkan:
p : Ana diterima di salah satu sekolah menengah atas
q : Ana belajar matematika enam jam perhari
r : Ana lulus mata pelajaran matematika

Argumen:

H1: p --> q
H2: q --> r
H3: q
----------------
K  : r

Setelah menentukan argumennya, selanjutnya akan diperiksa argumen dengan dalil-dalil kesetaraan:
[(p --> q) ^ (q --> r) ^ q] --> r
= [(-p v q) ^ (-q v r) ^ q] --> r
= [(-p v q) ^ q ^ (-q v r)] --> r
= [q ^ (-q v r)] --> r
= [(q v -q) v (q ^ r)] --> r
= [o v (q ^ r)] --> r
= (q ^ r) --> r
= -(q ^ r) v r
= (-q v -r) v r
= -q v (-r v r)
= -q v i
= i
Karena implikasinya merupakan tautologi maka argumen tersebut sah.


Contoh Soal dan Penyelesaian Logika Matematika
Demikianlah Pembahasan Kita Kali ini Mengenai Contoh Soal dan Penyelesaian Logika Matematika,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2017/04/contoh-soal-dan-penyelesaian-logika.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments