Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Soal dan Jawaban Materi Turunan

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Soal dan Jawaban Materi Turunan, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Soal dan Jawaban Materi Turunan Selengkapnya.

lihat juga


Soal dan Jawaban Materi Turunan

Pada kesempatan kali ini, saya ada memberikan lima contoh soal dan jawabannya tentang turunan laju terkait.

Nomor 1

Soal: Sebuah tempat air berbentuk kerucut terbalik dengan jari-jari alas 60 cm dan tinggi 100 cm diisi dengan laju 25 cm^3/detik
a.  Tentukan laju perubahan tinggi air pada saat tingginya  25 cm !
b.  Berapa lama waktu yang dibutuhkan untuk mengisi tempat tersebut hingga penuh?
Jawab a :
Misalkan:
 r adalah jari-jari permukaan air,
h adalah ketinggian air, dan
V adalah volume air dalam kerucut
Sehingga diperoleh :
V = (1/3).π.r^2.h
Hubungan antara r dan h diberikan oleh:
(60/100) = (r/h)
             r = (60h/100) <=> r = (3h/5)
Dengan demikian :
V = (1/3) . π . (3h/5)^2 . h = (9/25) . π . h^3
Sehingga :
dV       9                     dh
----- =  ---- (π . h^2)  ------
dt        25                   dt

dh        25       dV/dt
---- = ------  --------------
dt         9       π 25^2

Pada saat h = 25 cm diperoleh :
(dh/dt) = (25/9) . (25/(π . 25^2)) = (1/9π) cm/detik

Jawab b :
Waktu yang dibutuhkan untuk mengisi tempat tersebut hingga penuh :
         volume kerucut            (1/3) . π . 60^2 . 100
dt = ----------------------- = ----------------------------  = 4800π detik = 800π menit
         laju pengisian                         25     


Nomor 2

Soal: Seseorang mengisi sebuah tabung berdiameter 10 cm dan tinggi 8 cm dengan laju tetap 30 cm^3/detik. Tanpa disadari, tabung yang dia gunakan bocor,  sehingga air keluar dari tabung dengan laju tetap 5 cm^3/detik
a.  Hitunglah laju bertambahnya ketinggian permukaan air di tabung pada saat ketinggian air 4 cm!
b.  Berapa lama waktu yang dibutuhkan untuk mengisi tabung tersebut dari keadaan kosong hingga penuh? 

Diketahui diameter tabung 10 cm sehingga jari-jari alas tabung adalah 5 cm

Jawab a:
Misalkah
h adalah tinggi permukaan air di dalam tabung (dalam cm)
V adalah volume air dalam tabung (dalam cm^3)

Laju yang diketahui:
dV/dt = (30-5) = 25 cm^3/detik

V = π . 5^2 . h = 25πh (karena r = 5 konstan)
dV/dt = 25π (dh/dt)
Sehingga pada saat h = 4 cm berlaku:
25 = 25π (dh/dt) <==> dh/dt = 1/π cm/detik

Jawab b:
Diketahui tinggi tabung adalah 8 cm dan laju naiknya tinggi permukaan air adalah 1/π cm/detik, sehingga agar tabung penuh diperlukan waktu 8π detik

Nomor  3

Soal: Spongbob adalah makhluk laut yang berbentuk balok. Jika ada di daratan, Spongbob mampu minum (mrnyerap) air dengan laju 3 cm^3/detik. Bersamaan dengan itu, badannya membesar dengan bentuk dan perbandingan panjang, lebar dan tebalnya tetap. Jika diketahui ukuran panjang 2 cm,  lebar 2 cm dan tebalnya 1 cm. Maka tentukan laju perubahan luas tubuh Spongbob pada waktu tebal tubuhnya 2 cm.

Jawab:
Misalkan:
t : waktu dalam detik,
p(t) : panjang tubuh Spongbob pada waktu t,
l(t) : lebar tubuh Spongbob pada waktu t,
h(t) : tebal tubung Spongbob pada waktu t,
V(t) : volume air yang masuk ke dalam tubuh Spongbob pada saat t,
L(t) : luas permukaan tubuh Spongbob pada saat t,

Diketahui:
dV(t)/dt = 3 cm^3/detik
p(t) : l(t) : h(t) = 2 : 2 : 1  ===> p(t) = l(t) = 2h(t)
Ditanyakan : dL(t)/dt pada saat h = 2

Karena tubuh Spongbob berbentuk balok, maka:
V = plh = (2h)(2h)h = 4h^3
dV/dt = 12 . h^2 . dh/dt
    3     = 12. h^2 . dh/dt  ===> dh/dt = 1/4 h^2
Luas permukaan :
L = 2pl + 2hl + 2ph
    = 2(2h)(2h)  + 2h(2h) + 2(2h)h = 16 h^2
dL/dt = 32 dh/dt = 32h (1/4  h^2) = 8/h
Pada saat h = 2, dL/dt = 4 cm^2/detik

Nomor 4

Soal: Dua mahasiswa Sinta dan Jojo berdiri terpisah dengan Jojo berada 30 meter di sebelah timur Sinta. Sinta kemudian bersepeda ke utara dengan kecepatan 5 meter/detik dan 5 menit kemudian Jojo bersepeda ke selatan dengan kecepatan 3 meter/detik. Berapa jauh perubahan jarak antara keduanya 10 menit setelah Sinta mulai mengayuh sepeda?

Jawab:
Misalnya:
g(t) adalah jarak yang sudah ditempuh Sinta pada saat t,
k(t) adalah jarak yang sudah ditempuh Jojo pada saat t,
z(t) adalah jarak antara Sinta dan Jojo pada saat t,

Diketahui:
dg/dt = 5 meter/detik
dk/dt = 3 meter/detik
Yang ditanyakan: dz/dt pada saat Sinta sudah bersepeda selama 10 menit (atau selama Jojo bersepeda selama 10 - 5 = 5 menit)

Menurut Teotema Phytagoras, hubungan antara g, k dan z diberikan oleh:
z^2 = (g + k) ^2 + 30^2    <====>    2z dz/dt = 2(g + k) (dg/dt + dk/dt)
                                            <====>    dz/dt = (g + k)/z (dg/dt + dk/dt)
Jarak yang ditempuh Sinta setelah bersepeda selama 10 menit:
g = 5 . (10 . 60) = 3000 meter

Jarak yang ditempuh Jojo setelah bersepeda selama 5 menit:
k = 3 . (5 . 60) = 900 meter
Pada saat g = 3000 meter dan k = 900  meter,  diperoleh:
z = √( (g + k)^2 + 30^2 ) = √( (3000 + 900)^2 + 30^2 ) = 30√16901
Sehingga,
dz/dt = (g + k)/z (dg/dt +dk/dt)
          = (3000 + 900)/(30√16901) . (5 + 3) = 8 meter/detik

Nomor 5

Soal: Ketika sedang menyaksikan suatu pameran kedirgantaraan, Mr Rate melihat sebuah pesawat tempur (P)  melintas lurus di depannya dengan laju 500 km/jam. Jarak terdekat lintasan pesawat tersebut terhadap penonton  (Mr Rate, R)  adalah 0,5 km.
a.  Tentukan laju sudut pandang penonton pesawat dari garis lurus yang tegak lurus terhadap lintasan pesawat ()  terhadap waktu t, yaitu d/dt, sebagai fungsi dari .
b.  Tentukan nilai maksimum dari d/dt


Jawab a :
Misalkan:
x adalah jarak yang ditempuh pesawat dari titik yang berada tepat 0,5 km di ayar R,  maka:
tan = x/0,5 =2x
Jika kedua ruas diturunkan terhadap t, akan diperoleh:
Sec^2 d/dt = 2 dx/dt = 2 (500) = 1000
          d/dt          = (1000/sec^2) = 1000 cos^2

Jawab b :
Karena nilai maksimum dari  cos^2 adalah 1 maka nilai maksimum dari d/dt adalah 1000(1) = 1000 rad/jam


Soal dan Jawaban Materi Turunan
Demikianlah Pembahasan Kita Kali ini Mengenai Soal dan Jawaban Materi Turunan,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2017/02/soal-dan-jawaban-materi-turunan.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments