Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Materi Matematika SMA Permutasi dan Kombinasi

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Materi Matematika SMA Permutasi dan Kombinasi, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Materi Matematika SMA Permutasi dan Kombinasi Selengkapnya.

lihat juga


Materi Matematika SMA Permutasi dan Kombinasi

Materi Matematika SMA Permutasi dan Kombinasi - Materi permutasi dan kombinasi matematika berkaitan dengan materi peluang yang bisa kalian akses pada artikel yang membahas tentang Pengertian dan Rumus Peluang Matematika.

Penjelasan Perbedaan Permutasi dan Kombinasi Matematika, Contoh Soal dan Pembahasan Lengkap


Pengertian Permutasi dan Kombinasi Matematika

Permutasi

Dalam ilmu matematika permutasi diartikan sebagai sebuah konsep penyusunan sekumpulan objek/angka menjadi beberapa urutan berbeda tanpa mengalami pengulangan.

Di dalam permutasi, urutan sangat diperhatikan. Setiap objek yang dihasilkan harus berbeda antara satu dengan yang lain. Sebagai contoh, urutan huruf {ABC} berbeda dengan {CAB} begitu juga dengan {BAC} dan {ACB}.
Rumus untuk mencari banyaknya permutasi n unsur jika disusun pada unsur k dimana k n adalah :

Rumus Permutasi

P(n,k) =  n!  
            (n-k)!

Untuk memahami rumus tersebut, perhatikan pembahasan soal berikut ini :

Contoh Soal 1 :
Disebuah kelas terdapat 4 orang siswa yang dicalonkan untuk mengisi posisi bendahara dan sekretaris. Tentukan banyaknya cara yang bisa digunakan untuk mengisi posisi tersebut!

Penyelesaian :
Soal di atas bisa dituliskan sebagai permutasi P(4,2), n(banyaknya guru) = 4 k (jumlah posisi) = 2
Kita masukkan ke dalam rumus :

P(4,2) =   4!     = 4 x 3 x 2 x 1 = 24 = 12
             (4-2)!          2 x 1            2



Contoh Soal 2 :
Berapakah banyaknya bilangan yang dibentuk dari 2 angka berbeda yang bisa kita susun dari urutan angka 4, 8, 2, 3, dan 5?

Penyelesaian :
Pertanyaan di atas bisa disimpulkan sebagai permutasi yang terdiri dari 2 unsur yang dipilih dari 5 unsur, maka bisa dituliskan sebagai P(5,2). Lalu, kita masukkan ke dalam rumus :

P(5,2) =   5!    = 5 x 4 x 3 x 2 x 1 = 120 = 20
             (5-2)!           3 x 2 x 1             6

Maka ada 20 cara yang bisa dilakukan untuk menyusun bilangan tersebut menjadi 2 angka yang berbeda - beda (48, 42, 43, 45, 84, 82, 83, 85, 24, 28, 23, 25, 34, 38, 32, 35, 54, 53, 52).

Kombinasi

Kombinasi merupakan sebuah kumpulan dari sebagian atau seluruh objek dengan tidak memperhatikan urutannya. Di dalam kombinasi {AB} dianggap sama dengan {BA} sehingga sebuah kombinasi dari dua objek yang sama tidak dapat terulang.

Rumus kombinasi dari suatu himpunan yang mempunyai n elemen bisa dituliskan sebagai berikut :

Rumus Kombinasi

C(n,r) = nCr = nCr =     n!    
                                   r!(n-r)!

Perhatikan baik - baik penggunaan rumus tersebut untuk menyelesaikan soal - soal di bawah ini :

Contoh Soal :
Manuel Pelegrini membawa 16 pemain saat Manchester City melawan Liverpool di Etihad Stadium. 11 orang diantaranya akan dipilih untuk bermain pada babak pertama. Jika kita tidak memperhatikan posisi pemain, berapakah banyaknya cara yang bisa diambil oleh pelatih untuk memilih pemain?

Penyelesaian :
Karena tidak mementingkan posisi pemain, maka kita gunakan rumus kombinasi :

16C11 =      16         = 16 x 15 x 14 x 13 x 12 x 11!
            11!(16-11)!                   11!5!

     =       524160        = 524160 = 4368
        5 x 4 x 3 x 2 x 1       120


Contoh Soal :
Sebuah ember berisi 1 buah alpukat, 1 buah pir, 1 buah jeruk dan 1 buah salak. Berapakah banyaknya kombinasi yang tersusun dari 3 macam buah?

Penyelesaian :
Diketahui n = 4 dan r = 3, maka :

4C=    4!      = 4 x 3 x 2 x 1 =      24    = 24 = 4
         3!(4-3)!           3!1!           3 x 2 x 1    6


Demikianlah pembahasan materi mengenai Materi Matematika SMA Permutasi dan Kombinasi. Semoga kalian bisa memahami penjelasan dan contoh - contoh soal yang diberikan dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!


Materi Matematika SMA Permutasi dan Kombinasi
Demikianlah Pembahasan Kita Kali ini Mengenai Materi Matematika SMA Permutasi dan Kombinasi,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2017/02/materi-matematika-sma-permutasi-dan.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments