Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan
Prediksi Soal Try Out SD dan MI 2017

Prediksi Soal Try Out SD dan MI 2017

Selamat pagi teman-teman, semoga di pagi ini kita semua dapat belajar dan memiliki energi positif dalam menggali pengetahuan terutama tetang cara menghitung, dan mengkalkulasi otak kita untuk selalu membuat formulasi rumus matematika. Kali ini Admin akan share tentang prediksi soal try out untuk Sekolah Dasar dan Madrasah tahun 2017. 

Ujian Sekolah/Madrasah merupakan sebuah proses pengukuran hasil belajar siswa SD kelas VI yang dilaksanakan secara serentak di Indonesia. Hasil US/M SD/MI walapun tidak menentukan dalam kekulusan, tetapi memiliki makna yang penting bagi prestice siswa maupun sekolah. Disisi lain, adanya persaingan yang ketat untuk mendapatkan sekolah menengah pertama, menuntut siswa memperoleh nilai tertinggi agar mampu mendapatkan sekolah sesuai yang diinginkan. 

Dalam dua tahun  terakhir Kisi-Kisi US/M SD/MI yang diterbitkan oleh BALITBANG KEMDIKBUD indikatornya sangat gemuk yaitu: 61 indikator Bahasa Indonesia, 60 indikator Matematika, dan 59 indikator IPA. Dengan gemuknya indikator tersebut menuntut para guru untuk pandai-pandai memilih dan memilah mana indikator yang akan muncul dalam soal Ujian Sekolah. Walaupun kebijakan penyelenggaraan Ujian Sekolah diserahkan ke daerah/provinsi namun pusat masih menitipkan 25% soal untuk dimasukkan dalam soal Ujian Sekolah 2016-2017, sedangkan yang 75% daerah/provinsi. Semoga dengan banyak berlatih variasi soal akan dapat membawa hasil yang memuaskan.

  1. Soal Try Out Bahasa Indonesia, download disini
  2. Soal Try Out Matematika, download disini
  3. Soal Try Out IPA, download disini
Contoh Soal dan Pembahasan Tentang Diagram Venn

Contoh Soal dan Pembahasan Tentang Diagram Venn

Sebelumnya mengenai Pengertian Diagram Venn, Contoh Soal Dan Pembahasannya ? apabila sudah membaca artikel tersebut maka kalian akan lebih mudah dalam memahami langkah-langkah menyelesaikan soal tentang diagram venn yang akan dibahas dalam artikel kali ini. Berikut adalah beberapa contoh soal dan pembahasan mengenai diagram venn. Silahkan simak dengan baik:

Diagram Venn Dilengkapi Contoh Soal dan Pembahasannya


Contoh Soal 1:
Diketahui himpunan :
Semesta = bilangan asli kurang dari 10
A = bilangan prima kurang dari 8
B = bilangan ganjil kurang dari 10
Gambarkan diagram Venn dari himpunan tersebut!

Jawab :
S = { 1,2,3,4,5,6,7,8,9,10}
A ={2,3,5,7}
B= {1,3,5,7,9}









Contoh Soal 2:
Perhatikan gambar berikut !









Tentukanlah himpunan P dan Q!

Jawab :
P = { a, b, c, j, k,l }
Q= { j, k, l, v, w, x }


Contoh Soal 3:
Dalam satu kelas terdapat 40 siswa, dari kelas tersebut mereka memilih dua jenis olah raga yitu badminton dan renang. Ternyata 25 siswa gemar badminton, 23 siswa gemar renang ,5 siswa tidak menyukai keduanya. Berapa jumlah siswa yang menyukai keduanya? Gambarkan diagram ven-nya!

Jawab  :












Jumlah siswa seluruhnya : 40 siswa
Siswa yang gemar badminton : 25 –x
Siswa yang gemar renang : 23 –x
Siswa yang tidak suka keduanya : 5
Siswa yang suka keduanya : x

Siswa seluruhnya = Siswa yang gemar badminton + Siswa yang gemar renang + Siswa yang tidak suka keduanya  + Siswa yang suka keduanya 

40 = (25 –x) + (23 –x) + 5 + x
40 = 53 –x
 X =  13

Jadi, siswa yang gemar keduanya ada 13 orang


Contoh Soal 4:
Dari sekelompok anak, diketahui 22 anak menyukai Matematika, 27 anak menyukai bahasa inggris, 7 siswa menyukai keduanya,  dan 8 anak tidak menyukai keduanya. Gambarkan diagram vennya dan tentukan jumlah anak dalam kelompok itu !

Jawab :
anak yang suka  matematika = 22 – 7 = 15
anak yang suka  bahasa inggris = 27 -7 = 20
anak yang suka  keduanya = 7
anak yang tidak suka  keduanya = 7
jumlah anak dalam seluruhnya = 15 + 20 + 7 + 8 = 50 











Jadi jumlah anak dalam kelompok tersebut adalah 50 anak

Contoh Soal 5:
Perhatikan gambar dibawah ini!

 










Tentukanlah :
a. P n Q
b. Q
c. P n Q n R

Jawab :a. P n Q = {7,9}
b. Q = {5, 7, 9, 12, 16, 17}
c. P n Q n R = 19


Contoh Soal 6:
Gambar di bawah ini merupakan data survey makanan kesukaan. Dari 30 orang diminta untuk memilih Sate/Bakso. Satu orang boleh memiih keduanya ataupun tidak memiih.
Tentukanlah nilai x !












Jawab :
Jumlah seluruhnya = 30
Suka sate = 12
Bakso = 6
Suka keduanya = 5
Tidak suka keduanya = x
Jumlah seluruhnya = 12 + 6 + 5 + x

30 = 23 + x
X = 7 orang

Jadi jumlah orang yang tidak suka sate maupun bakso / nilai x ada 7 orang.
Prediksi Soal Matematika SMA dan Strategi Menghadapi UN 2018

Prediksi Soal Matematika SMA dan Strategi Menghadapi UN 2018

Selamat malam sobat semua, udah lama Admin tidak melakukan posting terkait dengan Soal-Soal Matematika baik tingkat SD, SMP dan SMA. Kali ini admin akan memberikan beberapa tip strategi untuk teman-teman yang hendak akan melaksanakan Ujian Nasional 2018, apa saja sih yang harus dipersiapan?

Hal yang pertama dipersiapkan adalah mempelajari berbagai soal-soal yang terkait, baik contoh soal Ujian Nasional Matematika SMA Tahun 2017, bahkan prediksi soal-soal hasil Try Out 2018.  Berikut admin akan memberikan beberapa contoh soal Try Out 2018 yang bisa teman-teman kerjakan yaitu:

  1. Contoh soal Try Out Ujian Nasional Matematika SMA Jurusan IPA Paket 1, download disini
  2. Contoh soal Try Out Ujian Nasional Matematika SMA Jurusan IPA Paket 2, download disini
  3. Contoh soal Try Out Ujian Nasional Matematika SMA Jurusan IPS Paket 1, download disini
  4. Contoh soal Try Out Ujian Nasional Matematika SMA Jurusan IPS Paket 2, download disini
  5. Contoh soal Try Out Ujian Nasional Matematika SMA Jurusan Bahasa Paket 1, download disini
  6. Contoh soal Try Out Ujian Nasional Matematika SMA Jurusan Bahasa Paket 1, download disini
Sedangkan Strategi kedua yang harus dipersiapkan adalah:
  1. Mempersiapkan Identitas Peserta (Kartu Peserta Ujian)
  2. Mengisi Identitas dengan Lengkap
  3. Kerjakan Soal yang mudah terlebih dahulu
  4. Melewati soal-soal yang dianggap sulit
  5. Cek kembali setelah selesai mengisi LJK.
Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel

Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel

Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel- Sistem persamaan linear tiga variabel bisa diartikan sebagai himpunan dari tiga buah persamaan garis lurus dimana masing - masing persamaan tersebut terdiri dari tiga buah peubah (variabel). Ada beberapa metode yang bisa kita pakai untuk menyelesaikan sistem persamaan ini, yaitu metode substitusi, eliminasi, dan determinan. Agar kalian bisa lebih memahami materi ini, sebaiknya kalian pelajari dulu materi tentang Sistem Persamaan Linear Dua Variabel.

Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA

Langkah Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV)

Sama halnya dengan prinsip penyelesaian persamaan yang lain, langkah awal kita harus mengurangkan (mengeliminasi) dua persamaan untuk memperoleh persamaan baru dengan menghilangkan satu buah variabel. Simak baik - baik contoh soal dan pembahasan di bawah ini ;

Contoh Soal :
Tentukan himpunan penyelesaian x, y dan z dari persamaan berikunt:

3x - y + 2z = 15    ......(i)
2x + y + z = 13     ......(ii)
3x + 2y + 2z = 24 ......(iii)

Penyelesaian :
Gunakan metode eliminasi terhadap 2 persamaan terlebih dahulu :

3x - y + 2z = 15 X 1 → 3x - y + 2z = 15
2x + y + z = 13  X 2 → 4x + 2y + 2z = 26
                         ____________________ - 
                                       -x - 3y = -11 ......(iv)


2x + y + z = 13      |X2 4x + 2y + 2z = 26
3x + 2y + 2z = 24  |X1 3x + 2y + 2z = 24
                              ____________________ -     
                                                       x = 2 ......(v)

Karena dari persamaan (v) kita sudah mendapatkan nilai x, sekarang tinggal menggunakan metode substitusi terhadap persamaan (iv), sehingga :

-x - 3y = -11
-(2) - 3y = -11
         3y = -11 + 2
              = 9
           y = 3

Sekarang kita telah mendapatkan nilai y. Lansung saja substitusikan nilai x dan y pada salah satu persamaan i, ii, atau iii untuk mengetahui nilai z.

2x + y + z = 13
2(2) + 3 + z = 13
    4 + 3 + z = 13
          7 + z = 13
                z = 13 - 7
                   = 6

Maka himpunan penyelesaian dari ketiga persamaan tersebut adalah {2; 3; 6}

Demikianlah pembahasan singkat materi mengenai Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel. Semoga dengan adanya artikel ini bisa membantu kalian dalam menyelesaiakan soal - soal yang berkaitan dengan materi ini. Teruslah belajar dan belajar!
Soal dan Pembahsan Diskon dan Rabat

Soal dan Pembahsan Diskon dan Rabat

Yang dimaksud dengan rabat adalah potongan harga yang diberikan terhadap suatu barang atau jasa. Kita lebih mengenal rabat dengan sebutan diskon. Kalian pasti sering melihat di swalayan atau supermarket ada banyak potongan harga atau diskon, itu adalah contoh dari rabat. Apabila kalian penasaran tentang bagaimana cara menghitung potongan harga tersebut, akan memberikan ulasannya kepada kalian melalui contoh-contoh soal berikut ini:

Contoh Soal dan Pembahasan Aritmetika Sosial Tentang Rabat


Contoh Soal 1
Melly ingin membeli baju seharga Rp 120.000. Ternyata baju tersebut mendapat rabat sebesar 20 %. Berapakah besarnya rabat tersebut?

Jawab:
Harga baju : Rp 120.000
Rabat :

20% x 120.000
= 20/100 x 120.000 = 24.000

Jadi, rabatnya sebesar Rp.24.000


Contoh Soal 2
Sebuah Toko, memberikan diskon 5 % untuk setiap pembelian buku Matematika. Jika sebuah buku matematika memiliki harga Rp. 85.000. berapakah harga buku setelah diskon?

Jawab :
Harga buku : Rp. 85.000

Rabat :
5 % x Rp. 85.000,00
= 5/100 x 85.000 = 4.250

Harga buku setelah diberi diskon = 85.000 – 4.250 = 80.750
Jadi harga buku setelah diskon adalah Rp. 80.750


Contoh Soal 3
Rani membeli sebuah jam tangan seharga Rp. 235.000. Berapa rupiah yang harus Rani bayar jika toko memberikan diskon sebesar 25 %?

Jawab :
Harga jam : Rp. 235.000,00

Rabat : 25 % x Rp. 235.000
= 25/100 x 235.000 = 58.750

Harga jam setelah diberi diskon = Rp. 235.000 – 58.750 =  Rp. 176.250
Jadi harga jam setelah diskon adalah Rp. 176.250


Contoh Soal 4
Pada akhir tahun lalu, Santi membeli Tas di sebuah toko seharga Rp. 400.000,00 . Karena diskon ia hanya membayar sebesar Rp. 360.000,00. Berapakah persentase diskon yang diberikan toko?

Jawab :
Harga Tas : Rp. 400.000,00
Harga Tas setelah diberi diskon = Rp. 360.000,00
Diskon = Rp. 400.000,00 - Rp. 360.000,00 = Rp. 40.000,00
Presentase diskon = diskon : harga awal

     = Rp. 40.000,00 : Rp. 400.000,00
     = 0.1
     = 10/100 = 10%

Jadi presentase  diskon adalah 10%


Contoh Soal 5
Aldi mendapat potongan sebesar Rp. 45.000 pada sepatu yang dibelinya. Jika, diskon yang diberikan toko sepatu adalah 15%. Berapakah harga sepatu yang dibeli Aldi sebelum didiskon?

Jawab:
Diskon = Rp.45.000,00
Presentase Diskon = 15%
Harga awal = diskon : presentase diskon
       = 45.000 : 15 %
       = 300.000

Jadi harga awal sepatu sebelum didiskon adalah Rp. 300.000

Materi Matematika SMA Fungsi Komposisi dan Fungsi Invers

Materi Matematika SMA Fungsi Komposisi dan Fungsi Invers

Materi Matematika SMA Fungsi Komposisi dan Fungsi Invers - Sebelum mempelajari materi ini, sebaiknya kalian memahami Teori dan Konsep Himpunan Matematika. Fungsi atau pemetaan termasuk ke dalam relasi karena di dalam sebuah1 fungsi dari himpunan A ke himpunan B terdapat relasi khusus yang memasangkan tiap - tiap anggota yang ada pada himpunan A dengan tiap - tiap anggota pada himpunan B. Agar bisa menyelesaikan soal - soal mengenai fungsi komposisi dan invers tentu kita harus memahami dengan baik konsep ataupun prinsip dasar dari fungsi komposisi dan fungsi invers.

Pembahasan Fungsi Komposisi dan Fungsi Invers

Pengertian Fungsi Komposisi dan Fungsi Invers


Fungsi Komposisi

Dari dua jenis fungsi f(x) dan g(x) kita bisa membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. Operasi komposisi bisa dilambangkan dengan "o" (komposisi/bundaran), fungsi baru yang bisa kita bentuk dari f(x) dan g(x) adalah :

(g o f) (x) artinya f dimasukkan ke g
(f o g) (x) artinya g dimasukkan ke f


Contoh Soal 1:
Diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...

Penyelesaian :
(f o g)(x) = g dimasukkan ke f menggantikan x
               = 3(2x) - 4
               = 6x - 4

(g o f)(x) = f dimasukkan ke g menggantikan x
               = 2(3x - 4)
               = 6x - 8



Syarat Fungsi Komposisi

Contoh Soal 2:
Misal fungsi f dan g dinyatakan dalam pasangan terurut :
f = {(-1,4), (1,6), (3,3), (5,5)}
g = {(4,5), (5,1), (6,-1), (7,3)}

Tentukan :
a. f o g                                d. (f o g) (2)
b. g o f                                e. (g o f) (1)
c. (f o g) (4)                         f. (g o f) (4)


Penyelesaian :
Pasangan terurut dari fungsi f dan g bisa digambarkan dengan diagram panah berikut ini :
a. (f o g) = {(4,5), (5,6), (6,4), (7,3)}
b. (g o f) = {(-1,5), (1,-1), (3,3), (5,1)}
c. (f o g) (4) = 5
d. (f o g) (2) = tidak didefinisikan
e. (g o f) (1) = -1


Sifat - Sifat Fungsi Komposisi

Fungsi Komposisi memiliki beberapa sifat, diantaranya :

Tidak Komutatif
(g o f)(x) = (f o g)(x)

Asosiatif
(f o (g o h))(x) = ((f o g) o h)(x))

Fungsi Identitas I(x) = x
(f o I(x) = (I o F)(x) = f(x)


Cara Menentukan Fungsi Bila Fungsi Komposisi dan Fungsi Yang Lain Diketahui


Misalkan jika fungsi f dan fungsi komposisi (f o g) atau (g o f) telah diketahui maka kita bisa menentukan fungsi g demikian juga sebaliknya.

Contoh Soal 3 :
Misal fungsi komposisi (f o g)(x) = -4x + 4 dan f(x) = 2x + 2
Tentukan fungsi g(x)!

Penyelesaian :
(f o g) (x)    = -4x + 4
f (g (x))       = -4x + 4
2 (g (x)) + 2 = -4x + 4
2 g (x)         = -4x + 2
   g (x)         = -4x + 2
                           2
   g (x)         = -2x + 1
Jadi, fungsi g (x) = -2x + 1



Fungsi Invers

Apabila fungsi dari himpunan A ke B dinyatakan dengan f, maka invers dari fungsi f merupakan sebuah relasi dari himpunan A ke B. Sehingga, fungsi invers dari f : A -> B adalah f-1 :B -> A. Bisa disimpulkan bahwa daerah hasil dari f-1(x) merupakan daerah asal bagi f(x) begitupun sebaliknya.

Cara Menentukan Fungsi Invers Bila Fungsi f(x) Telah Diketahui :

Pertama
Ubah persamaan y = f (x) menjadi bentuk x sebagai fungsi dari y

Kedua
Hasil perubahan bentuk x sebagai fungsi y itu dinamakan sebagai f-1(y)

Ketiga
Ubah y menjadi x[f-1(y) menjadi f-1(x)]


Contoh Soal :

Pembahasan Fungsi Komposisi dan Fungsi Invers


Demikianlah pembahasan materi mengenai Fungsi Komposisi dan Fungsi Invers. Semoga kalian bisa memahami penjelasan dan contoh soal yang diberikan dengan mudah sehingga artikel ini bisa membantu kalain dalam menyelesaikan soal - soal yang berkaitan dengan materi ini. Selamat belajar!
Materi Matematika SMA Rumus Barisan dan Deret Geometri

Materi Matematika SMA Rumus Barisan dan Deret Geometri

Materi Matematika SMA Rumus Barisan dan Deret Geometri - Di dalam matematika terdapat dua jenis barisan dan deret. Yang pertama adalah barisan dan deret aritmatika dan yang kedua adalah barisan dan deret geometri. Dalam artikel sebelumnya telah disampaikan materi mengenai Barisan dan Deret Aritmatika, maka kali ini materi yang akan dibahas difokuskan kepada penjelasan mengenai definisi dan rumus - rumus yang digunakan dalam barisan dan deret geometri.

Materi Rumus Barisan dan Deret Geometri Lengkap


Pengertian dan Rumus Barisan Geometri


Barisan geometri didefinisikan sebagai barisan yang tiap - tiap sukunya didapatkan dari hasil perkalian sebelumnya dengan sebuah konstanta tertentu.

Contoh Barisan Geometri

3, 9, 27, 81, 243, ...

Barisan di atas merupakan contoh barisan geometri dimana setiap suku pada barisan tersebut merupakan hasil dari perkalian suku sebelumnya dengan konstanta 3. Maka disimpulkan bahwa rasio pada barisan di atas adalah 3. Rasio pada suatu barisan bisa dirumuskan menjadi :

r = ak + 1/ak

dimana ak adalah sembarang suku dari barisan yang ada. Sementara ak+1 adalah suku selanjutnya setelah ak.

Untuk menentukan suku ke-n dari sebuah barisan geometri, kita bisa menggunakan rumus :

Un = arn-1

dimana a merupakan suku awal dan r adalah nilai rasio dari sebuah barisan geometri.


Perhatikan baik - baik penggunaan rumus di atas dalam menyelesaikan soal :

Contoh Soal dan Pembahasan Barisan Geometri

Contoh Soal 1 :
Sebuah bakteri mampu melakukan pembelahan diri menjadi 4 setiap 12 menit. Berapakah jumlah bakteri yang ada setelah 1 jam apabila sebelumnya terdapat 3 buah bakteri?

Penyelesaian :
a = 3
r = 4
n = 1 jam/12 menit = 60/12 = 5

Masukkan ke dalam rumus
Un = arn-1
U5 = 3 x 45-1
      = 3 x 256
      = 768 bakteri


Pengertian dan Rumus Deret Geometri


Deret geometri bisa diartikan sebagai jumlah dari n suku pertama pada sebuah barisan geometri. Jika suku ke-n dari suatu barisan geometri digambarkan dengan rumus : an = a1rn-1, maka deret geometrinya dijabarkan menjadi :

Sn = a1 + a1r + a1r2 + a1r3 + ... + a1rn-1

Apabila kita mengalikan deret geometri di atas dengan -r, lalu kita jumlahkan hasilnya dengan deret aslinya, maka kita akan memperoleh :

Materi Rumus Barisan dan Deret Geometri Lengkap

Setelah diperoleh Sn - rSn = a1 - a1rn maka kita bisa mengetahui nilai dari suku n pertama dengan cara berikut :

Materi Rumus Barisan dan Deret Geometri Lengkap

Berdasarkan hasil perhitungan di atas, kita bisa menyimpulkan bahwa rumus jumlah n suku pertama pada sebuah barisa geometri adalah :

Materi Rumus Barisan dan Deret Geometri Lengkap


Perhatikan cara penggunaan rumus tersebut pada contoh soal berikut ini :

Contoh Soal Deret Geometri

Contoh Soal 2:
Tentukanlah jumlah 8 suku pertama dari barisan geometri 2, 8, 32, ...

Pembahasan :
a = 2
r = 4
n = 8

Sn = a (1-r) / (1-r)
     = 2 (1-4) / (1-4)
     = 2 (1 - 65536) / (-3)
     = 2 (-65535) / (-3)
     = 2 x 21845
     = 43690


Demikianlah pembahasan materi mengenai Rumus Barisan dan Deret Geometri dilengkapi Dengan Pembahasan Contoh Soal. Semoga kalian bisa memahami pembahasan materi ini dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam menyelesaikan soal - soal yang berkaitan dengan artikel ini. Selamat belajar!
Sifat-sifat Transpose Matriks serta Contoh Soal dan Pembahasan

Sifat-sifat Transpose Matriks serta Contoh Soal dan Pembahasan

Sifat-sifat Transpose Matriks serta Contoh Soal dan Pembahasan - Yang dimaksud dengan transpose matriks yaitu ketika pada sebuah matriks dilakukan pertukaran antara dimensi kolom dan barisnya. Definisi lain dari transpose matriks adalah sebuah matriks yang didapatkan dengan cara memindahkan elemen - elemen pada kolom menjadi elemen baris dan sebaliknya. Biasanya sebuah matriks transpose disimbolkan dengan menggunakan lambang tanda petik (A') ataupun dengan hurut T kecil di atas (AT). Perhatikan gambar berikut ini :

Pengertian Transpose Matriks, Sifat-sifatnya serta Contoh Soal dan Pembahasan

Berdasarkan gambar di atas dapat didefinisikan bahwa matriks m x n berubah menjadi m x n. Jika diperhatikan, elemen - elemen yang ada pada baris satu berubah posisi menjadi elemen kolom 1. Elemen pada baris 2 berubah menjadi elemen pada kolom 2, begitu juga dengan elemen pada baris ke-3 berubah posisi menjadi elemen kolom ke-3/ Sekarang perhatikan baik - baik sifat - sifat yang berlaku untuk transpose matriks.


Sifat - Sifat Matriks Transpose


Transpose matriks memiliki beberapa sifat yang menjadi dasar di dalam operasi perhitungan matriks, yaitu :

(A + B)T = AT + BT
(AT)T = A
λ(AT) = (λAT), bila λ suatu scalar
(AB)T = BT AT



Contoh Soal dan Pembahasan Transpose Matriks

Berikut adalah salah satu contoh soal tentang transpose matriks dan pembahasan mengenai cara menjawab dan menyelesaikannya :

Pengertian Transpose Matriks, Sifat-sifatnya serta Contoh Soal dan Pembahasan


Demikianlah pembahasan materi mengenai Sifat-sifat Transpose Matriks serta Contoh Soal dan Pembahasan. Semoga kalian bisa memahami penjelasan dan contoh soal yang diberikan dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam menyelesaikan soal - soal yang berkaitan dengan materi ini.
Materi Matematika Matriks

Materi Matematika Matriks

Materi Matematika Matriks- Dalam artikel kali ini akan membahas materi mengenai definisi atau pengertian matriks matematika serta unsur - unsur yang ada di dalamnya. Untuk lebih jelasnya perhatikan baik - baik pembahasan berikut ini:

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap



Definisi Matriks dan Jenis - Jenis Matriks Matematika


Dalam matematika, matriks merupakan kumpulan bilangan, simbol atau ekspresi, berbentuk persegi panjang yang disusun menurut baris dan kolom. Bilangan - bilangan yang terdapat di suatu matriks disebut dengan elemen atau anggota matriks.

Selanjutnya, secara umum matriks bisa diartikan sebagai sebuah susunan atau kumpulan dari beberapa bilangan yang disusun berdasarkan kepada baris dan kolom yang bentuknya persegi panjang. Matriks mempunyai ciri khas khusus dimana biasanya bilangan yang menjadi elemen dari sebuah matriks disusun dengan diapit oleh tanda kurung siku [] namun terkadang ada juga elemen matriks yang diapit oleh tanda kurung biasa ().

Ukuran dari sebuah matriks disebut dengan ordo yang menjelasakan jumlah dari kolom dan baris yang ada di dalam matriks tersebut.

Ukuran dari sebuah matriks bisa disimbolkan dengan rumus sebagai berikut :

Amxn

A = Nama Matriks
m = jumlah baris
n = jumlah kolom
mxn = ordo matriks

Contoh :

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap

Jangan sampai terbalik dalam membaca ordo matriks, ingatlah bahwa ordo matriks merupakan banyaknya baris dikali dengan banyaknya kolom.


Diagonal Utama dan Diagonal Sekunder Pada Matriks

Di dalam materi mengenai matriks juga dikenal dengan istilah diagonal. Terdapat dua jenis diagonal di dalam matriks yaitu diagonal utama dan diagonal sekunder. Diagonal utama merupakan garis miring yang ditarik dari sisi kiri atas matriks menuju sisi kanan bawah matriks. Sementara diagonal sekunder adalah kebalikannya. Seperti bisa dilihat pada gambar di bawah ini :


Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap



Jenis - Jenis Matriks Berdasarkan Banyaknya Baris dan Kolom


Matriks Persegi
Merupakan matriks yang memiliki baris dan kolom yang sama, misalnya 4x4, 2x2, atau 5x5. Sehingga ordonya dialmbangkan n x n.

Matriks Baris
Adalah matriks yang hanya memiliki satu buah baris namun memiliki beberapa kolom. Matriks ini ordonya adalah 1 x n dimana n harus lebih besar dari 1. Contohnya 1 x 2, 1 x 4, 1 x 5, 1 x 6, dan lain sebagainya.

Matriks Kolom
Merupakan kebalikan dari matriks baris. Hanya terdiri dari satu kolom namun memiliki beberapa baris. Ordo dari matriks ini adalah n x 1 dimana n harus lebih besar dari 1. Contohnya adalah 2 x 1, 3 x 1, 4 x 1, 5 x 1, dan lain sebagainya.\

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap


Matriks Mendatar
Adalah matriks yang mempunyai jumlah kolom yang lebih banyak dibandingkan jumlah barisnya. Contohnya adalah 3 x 5, 4 x 6, dan lain sebagainya.

Matriks Tegak
Merupakan kebalikan dari matriks mendatar dimana jumlah barisnya lebih banyak dibandingkan jumlah kolomnya. Contohnya adalah 6 x 3, 4 x 2, 8 x 5, dan lain sebagainya.

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap



Jenis Matriks Berdasarkan Pada Pola Elemennya


Matriks Nol
Merupakan matriks dengan ordo m x n dimana seluruh elemennya memiliki nilai nol.

Matriks Diagonal
Merupakan matriks persegi yang elemennya bernilai nol kecuali pada diagonal utamanya.

Matriks Identitas
Adalah matriks yang diagonal utamanya di isi dengan elemen bernilai 1 sementara elemen yang lain nilainya adalah nol.

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap

Matriks Segitiga Atas
Adalah matriks yang keseluruhan nilai di bawah diagonal utamanya adalah nol.

Matriks Segitiga Bawah
Merupakan kebalikan dari matriks segitiga atas dimana seluruh elemen yang ada di atas diagonal utamanya bernilai nol.

Matriks Simetris
Merupakan sebuah matriks dimana elemen yang ada di atas dan di bawah diagonal utamanya memiliki susunan nilai yang sama.

Matriks Skalar
Merupakan matriks yang memiliki elemen diagonal utama bernilai sama sementara elemen yang lain nilainya adalah nol.

Materi Pengertian dan Jenis-jenis Matriks Matematika Lengkap


Demikianlah pembahasan materi mengenai Pengertian dan Jenis-jenis Matriks Matematika Lengkap. Semoga artikel ini bisa memberikan pengetahuan yang baik bagi kalian terutama tentang matriks matematika. Selamat belajar!
Materi Matenatika SMA Kelas X Bilangan Pangkat

Materi Matenatika SMA Kelas X Bilangan Pangkat

Materi Matenatika SMA Kelas X Bilangan Pangkat - Dalam artikel sebelumnya Seribu Rumus Matematikatelah menyampaikan materi mengenai Pengertian, Operasi, Rumus dan Sifat-sifat Bilangan Berpangkat. Pembahasan kali ini masih memberikan penjelasan mengenai sifat - sifat dari masing - masing bentuk bilangan berpangkat. Bilangan berpangkat ada beberapa jenis, mulai dari bilangan berpangkat bulat positif, bilangan berpangkat negatif, dan ada juga bilangan berpangkat nol. Artikel ini akan membahas lebih fokus pada bilangan berpangkat bulat positif lalu dilanjutkan dengan sifaf pembagiannya.

Penjelasan Sifat-sifat Bilangan Pangkat Bulat Positif SMA Kelas X

Sifat Perkalian Bilangan Berpangkat Bilangan Bulat Positif


Agar kalian bisa memahami dengan baik, perhatikan operasi hitung berikut ini :

43 x 46 = (4 x 4 x 4) x (4 x 4 x 4 x 4 x 4 x 4)
                = 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4
                = 49

Maka disimpulkan bahwa :

43 x 46 = 43+6

Penjelasan perhitungan di atas sesuai dengan sifat :

am x an = am+n

Dimana a merupakan bilangan rasional, sedangkan m dan n merupakan bilangan bulat positif.

Sifat perkalian di atas akan lebih mudah dimengerti dengan mengamati contoh soal dan pembahasannya berikut ini :

Contoh Soal 1 :
Tentukan hasil perkalian dari bilangan berpangkat di bawah ini dengan menggunakan sifat perkalian bilangan berpangkat bulat positif :
a. 35 x 32
b. (-4)3 x (-4)2
c. 53 x 64
d. 7y2 x y3

Pembahasan :

a. 35 x 32 = 35+2
                 = 37 = 2187

b. (-4)3 x (-4)= (-4)3+2
                        = (-4)5 = -1024

c. Karena bilangan pokoknya berbeda (5 dan 6), kita tidak bisa menyederhanakan perkalian ini dengan sifat perkalian bilangan berpangkat :
53 x 64 = 125 x 1296 = 162000


d.  7y2 x y3 = 7y2+3
                    = 7y5


Sifat Pembagian Bilangan Berpangkat Bilangan Bulat Positif

Sama halnya dengan sifat perkalian, pada sifat pembagian bilangan berpangkat posisitf kita juga harus memperhatikan dan mengamati konsep dasarnya terlebih dahulu :

45/42 = (4 x 4 x 4 x 4 x 4) / (4 x 4)
             = 4 x 4 x 4
             = 43
45/4= 45-2

Maka bisa disimpulkan bahwa :

45/4= 45-2

Konsep perhitungan tersebut sesuai dengan sifat :

am / an = am-n

Dimana a merupakan bilangan rasional yang tidak sama dengan 0 sedangkan m dan n merupakan bilangan bulat positif dengan syarat m lebih besar daripada n.

Berikut penjelasan contoh soal tentang sifat di atas :

Contoh Soal 2 :
Tentukan hasil pembagian dari bilangan berpangkat di bawah ini dengan menggunakan sifat pembagian bilangan berpangkat bulat positif :

a . 28/23
b. -37/-35
c. 3q6/q3

Pembahasan :

a. 28/23 = 28-3
                =25
                = 32

b. -37/-3= -37-5
                   = -32
                 = 9

c. 3q6/q= 3q6-3
                  = 3q3


Demikianlah pembahasan materi mengenai Materi Matenatika SMA Kelas X Bilangan PangkatSemoga kalian bisa memahami penjelasan dan contoh - contoh soal di atas dengan mudah, sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!
Materi Matematika Persamaan Linear Dua Variabel

Materi Matematika Persamaan Linear Dua Variabel

Materi Matematika Persamaan Linear Dua Variabel - Dalam menyelesaikan Sistem Persamaan Linear Dua Variabel, ada berbagai jenis metode yang bisa digunakan diantaranya adalah metode substitusi dan eliminasi. Agar bisa menyelesaikan persoalan mengenai SPLDV kita harus memahami dengan baik berbagai metode tersebut. Berikut mengenai dua metode tersebut.


Materi Matematika Persamaan Linear Dua Variabel

Penyelesaian Sistem Persamaan Linear Dua Variabel dengan Metode Substitusi dan Eliminasi


Metode Substitusi

Metode substitusi merupakan cara menyelesaikan persamaan dengan memasukkan salah satu persamaan ke dalam persamaan yang lain. Perhatikan baik - baik contoh soal berikut ini :

Contoh Soal :
Tentukan nilai p dan q pada perssamaan berikut dengan menggunakan metode substitusi :

4p + 3q = 18
p + q = 8

Pembahasan :
Karena persamaan kedua lebih sederhana, kita bisa mengubahnya menjadi 8-p = q setelah itu kita masukkan ke dalam persamaan yang pertama :

4p + 3q = 18
4p + 3 (8-p) = 18
4p + 24 - 3p = 18
4p - 3p = 18 - 24
p = -6

Setelah kita mendapatkan nilai p = -6 lalu kita masukkan ke dalam persamaan kedua untuk mendapatkan nilai q :

p + q = 8
-6 + q = 8
q = 8 + 6
   = 14


Metode Eliminasi

Metode eliminasi merupakan sebuah cara menyelesaikan persamaan dengan cara menghilangkan salah satu dari variabel yang ada.

Contoh Soal :
Tentukan nilai x dan y dari persamaan berikut dengan menggunakan metode eliminasi :

8x + 3y = 48
3x + y = 17

Pembahasan :
Langkah pertama kita harus mencari nilai variabel x dengan menghilangkan variabel y.  Pada persamaan pertama nilai y adalah 3 sementara pada persamaan kedua nilai y adalah 1. Maka kita kalikan persamaan pertama dengan 1 dan persamaan kedua dengan 3 agar nilai y  bisa dihilangkan, sehingga :

8x + 3 y = 48 X1 -> 8x + 3y = 48
3x + y = 17    X3 -> 9x + 3y = 51 -
                                   -x = -3
karena -x = -3 maka x = 3

Setelah kita mengetahui nilai x, kita bisa mencari nilai y dengan memasukkan nilai x ke dalam salah satu persamaan di atas :

8x + 3y = 48
8 (3) + 3y = 48
24 + 3y = 48
3y = 48 - 24
     = 24
  y = 24 / 3
     = 8

Maka, kita sudah mendapatkan nilai x = 3 dan nilai y = 8
Untuk membuktikannya mari kita masukkan nilai x dan y ke dalam persamaan kedua :

3x + y = 17
3 (x) + 8 = 17
9 + 8 = 17

Ternyata terbukti nilai x dan y tersebut benar.


Demikianlah pembahasan materi mengenai Penjelasan Metode Substitusi dan Eliminasi Sistem Persamaan Linear Dua Variabel. Semoga kalian bisa memahami pembahasan materi di atas dan bisa menguasai contoh - contoh soal yang diberikan dengan mudah, sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!
Contoh Soal Cerita Persamaan Linear Satu Variabel

Contoh Soal Cerita Persamaan Linear Satu Variabel

Contoh Soal Cerita Persamaan Linear Satu Variabel - Dalam artikel sebelumnya telah dijelaskan materi mengenai Persamaan dan Pertidaksamaan Linear Satu Variabel. Materi kali ini akan membahas lebih rinci mengenai persamaan linear satu pariabel ke dalam beberapa contoh soal. Agar kalian bisa lebih memahami materi ini, perhatikan baik - baik pembahasan contoh soal di bawah ini :

Contoh Soal Cerita Persamaan Linear Satu Variabel

Contoh Soal Persamaan Linear Satu Variabel

Contoh Soal 1:
Pak Amri memiliki sebidang tanah berbentuk persegi panjang dengan lebar 5 meter lebih pendek dari panjangnya. Keliling tanah pak Amri adalah 50 meter. Berapakah ukuran panjang dan lebar tanah Pak Amri?

Penyelesaian :

Diketahui :
Keliling tanah = 50 meter
Misalkan ukuran panjang tanah = x, maka lebar tanah = x - 5
Keliling tanah = Keliling persegi panjang
                   50 = 2 (p + l)
                        = 2 (x + x - 5)
                        = 2 (2x - 5)
                        = 4x - 10
          50 + 10 = 4x
                  60 = 4x
             60 : 4 = x
                  15 = x
Jadi, Panjang tanah = x = 15 meter
Lebar tanah = x - 5 = 15 - 5 = 10 meter



Contoh Soal 2 :
Diketahui jumlah tiga bilangan genap yang berurutan adalah 66. Tentukanlah bilangan yang paling kecil!

Penyelesaian :

Diketahui :
Tiga bilangan genap berjumlah 66
Bilangan genap memiliki pola +2, misalkan bilangan genap yang pertama adalah x, maka bilangan genap kedua dan ketiga berturut - turut adalah x + 2, dan x + 4, sehingga :


bilangan 1 + bilangan 2 + bilangan 3 = 66
                                   x + (x+2) + (x+4) = 66
                                                    3x + 6 = 66
                                                          3x = 60
                                                            x = 20
bilangan genap pertama = x = 20
bilangan genap kedua = x + 2 = 20 + 2 = 22
bilangan genap ketiga = x + 4 = 20 + 4 = 24



Contoh Soal 3 :
Nilai x yang memenuhi persamaan 3x + 5 = 14 adalah ...

Penyelesaiannya :
3x + 5 = 14
3x = 14 - 5
     = 9
  x = 9 : 3
     = 3



Contoh Soal 4 :
Untuk persamaan 4x + y = 12, jika x = -1 maka y adalah ...

Penyelesaian :
4 (-1) + y = 12
     -4 + y = 12
      y = 12 + 4
         = 16



Contoh Soal 5 :
Nilai x yang memenuhi persamaan 5x - 7 = 3x + 5 adalah ...

Penyelesaiannya :
5x - 7 = 3x + 5
5x - 3x = 5 + 7
2x = 12
  x = 6


Demikianlah pembahasan materi mengenai Contoh Soal Persamaan Linear Satu Variabel Dalam Kehidupan Sehari-hari. Semoga dengan adanya artikel ini bisa membantu kalian dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!