Soal dan Pembahasan Sistem Persamaan Linear Dua Variabel

Apakah kalian sudah memahami apa yang di maksud dengan SPLDV ? Jika belum, sebaiknya kalian membaca terlebih dahulu materi sebelumnya mengenai Penjelasan Metode Subtitusi dan Eliminasi Sistem Persamaan Linear Dua Variabel  karena pembahasan soal yang akan diberikan oleh kali ini berhubungan dengan materi tersebut. apabila kalian sudah membaca dan memahami konsep di dalamnya, yuk mari langsung kita sama sama mempelajari contoh-contoh soal yang ada di bawah ini:

Contoh Soal Sistem Persamaan Linear Dua Variabel dan Pembahasannya


Contoh Soal 1
Tentukan penyelesaian dari SPLDV berikut ini dengan metode substitusi:
x + y = 8
2x + 3y = 19

Jawab :
x + y = 8…. (1)
2x + 3y = 19 … (2)
x + y = 8
x = 8- y

Subtitusikan x = y – 8 ke dalam persamaan 2 

2 (8- y) + 3y = 19
16 - 2y + 3y = 19
16 + y = 19
y = 3

Subtitusikan y = 3 ke dalam persamaan 1

x + 3 = 8
x = 5

Jadi, penyelesaian dari SPLDV tersebut adalah x = 5 dan y = 3


Contoh Soal 2
Tentukan penyelesaian dari SPLDV berikut dengan metode eliminasi:
2x – y = 7
x + 2y = 1

Jawab :

Eliminasi x
2x – y = 7 | x1 --> 2x – y = 7 ... (3)
x + 2y = 1 | x2 --> 2x – 4y = 2 ... (4)

2x – y = 7
x + 2y = 1 -
    -5y = 5
y = -1

Eliminasi y
2x – y = 7 | x2 --> 4x – 2y = 14 ... (5)
x + 2y = 1 | x1 --> x + 2y = 1 ... (6)

4x – 2y = 14
  x – 2y = 1 -
       5x =15
        x = 3

Jadi, penyelesaian dari SPLDV tersebut adalah x = 3 dan y = -1


Contoh Soal 3
Tentukan penyelesaian dari SPLDV berikut dengan metode campuran:
x + y = -5
x – 2y = 5

jawab :

Eliminasi x
x + y = -5
x – 2y = 5 -
      3y = -9
        y = -3

Substitusi y
x + (-3) = -5
x = -2

Jadi, penyelesaian dari SPLDV tersebut adalah x = -2 dan y = -3


Contoh Soal 4
Umur Melly 7 tahun lebih muda dari umur Ayu. Jumlah umur mereka adalah 43 tahun. Tentukanlah umur mereka masing-masing !

Jawab :
Misalkan umur melly = x dan umur ayu = y, maka
y – x = 7… (1)
y + x = 43… (2)

y = 7 + x

subtitusikan y = 7 + x kedalam persamaan 2

7 + x + x = 43
7 + 2x = 43
2x = 36
x = 18
y = 7 + 18 = 25

Jadi, umur melly adalah 18 tahun dan umur ayu 25 tahun.

Contoh Soal 5
sebuah taman memiliki ukuran panjang 8 meter lebih panjang dari lebarnya. Keliling taman tersebut adalah 44 m. tentukan luas taman !

Jawab :Luas taman = p x l
P = panjang taman
L = lebar taman

Model matematika :
P = 8 + l
k = 2p + 2l
2 ( 8 + l) + 2l = 44
16 + 2l + 2l = 44
16 + 4l = 44
4l = 28
l = 7

P = 7 + 8 = 15
Luas = 7 x 15 = 105 m2

Jadi, luas taman tersebut adalah 105 m2

0 Response to "Soal dan Pembahasan Sistem Persamaan Linear Dua Variabel"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel