Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Pengertian Sifat Distribtif Matematika Dilengkapi Pembahasan Contoh Soal

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Pengertian Sifat Distribtif Matematika Dilengkapi Pembahasan Contoh Soal, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Pengertian Sifat Distribtif Matematika Dilengkapi Pembahasan Contoh Soal Selengkapnya.

lihat juga


Pengertian Sifat Distribtif Matematika Dilengkapi Pembahasan Contoh Soal

Sifat Distribtif Matematika - Sifat distributif matematika merupakan sebuah sifat yang berhubungan dengan operasi hitung yang berlaku pada bilangan bulat. Bilangan bulat adalah kelompok bilangan yang terdiri dari gabungan antara bilangan cacah dan bilangan negatif (...., -3, -2, -1, 0, 1, 2, 3,....).

Pengertian Sifat Distribtif Matematika Dilengkapi Pembahasan Contoh Soal


Pengertian Sifat Distribtif Matematika

Di bawah ini merupakan pengertian sifat distributif menurut wikipedia :
"Distributif adalah suatu penggabungan dengan cara mengkombinasikan bilangan dari hasil operasi terhadap elemen - elemen kombinasi tersebut."

Secara sederhana, sifat distributif juga disebut sebagai penyebaran. Bentuk sifat distributif di dalam operasi hitung matematika dijabarkan seperti berikut ini :

a x (b + c) = (a x b) + (b x c)
                atau
s x (b - c) = (a x b) - (a x c)


Beberapa cara berlaku dalam penghitungan sifat distributif, Berikut penjelasannya :

Menyatukan angka pengali
Sebagai contoh :
(4 x 6) + (4 x 3) = ....

Berdasarkan perhitungan di atas, angka pengali yaitu sama - sama dikalikan 4 sehingga, dengan sifat distributif dapat dijabarkan menjadi :

(4 x 6) + (4 x 3) = 4 x (6 + 3)


Menjumlahkan angka yang dikalikan
Contoh :
2 x (3 + 4) = 2 x 7 = 14


Memisahkan angka pengali
Contoh :
10 x (8 + 4) = (10 x 8) + (10 x 4)
                    = 80 + 40
                    = 120

Agar kalian bisa lebih memahami uaraian di atas, berikut ini saya lampirkan beberapa contoh soal dan penyelesaiannya mengenai materi ini :

Contoh Soal Mengenai Sifat Distributif Matematika

Contoh Soal 1 :
a. 5 x (6 + 3)
b. 2 x (4 - 6)
c. 9 x (4 + 2)

Penyelesaian :
a. 5 x (6 + 3) = (5 x 6) + (5 x 3) = 30 + 15 = 45
b. 2 x (4 - 6) = (2 x 4) - (2 x 6) = 8 - 12 = -4
c. 9 x (4 + 2) = (9 x 4) + (9 x 2) = 36 + 18 = 54


Contoh Soal 2 :
a. 4 x (-6 + (-2))
b. 8 x (2 + (-9))
c. -4 x (12 + (-3))

Penyelesaian :
a. 4 x (-6 + (-2)) = (4 x -6) + (4 x -2) = -24 + -8 = -32
b. 8 x (2 + (-9)) = (8 x 2) + (8 x -9) = 16 + -72 = -56
c. -4 x (12 + (-3)) = (-4 x 12) + (-4 x -3) = -48 + 12 = -36

Demikianlah pembahasan materi mengenai Pengertian Sifat Distribtif Matematika Dilengkapi Pembahasan Contoh Soal. Semoga kalian bisa memahami penjelasan dan pembahasan contoh soal di atas dengan mudah sehingga artikel ini bisa membantu kalian dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!


Pengertian Sifat Distribtif Matematika Dilengkapi Pembahasan Contoh Soal
Demikianlah Pembahasan Kita Kali ini Mengenai Pengertian Sifat Distribtif Matematika Dilengkapi Pembahasan Contoh Soal,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2016/08/pengertian-sifat-distribtif-matematika.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments