Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Rangkuman Materi Sifat Determinan Matriks

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Rangkuman Materi Sifat Determinan Matriks, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Rangkuman Materi Sifat Determinan Matriks Selengkapnya.

lihat juga


Rangkuman Materi Sifat Determinan Matriks


Berikut ini akan saya paparkan beberapa sifat dari Determinan suatu matriks, diantaranya yaitu:

1. Jika matriks A memiliki suatu baris/kolom yang semua elemennya nol, maka det(A) = 0

Contoh:

   
karena ada baris yang semua elemennya nol, pada contoh diatas yaitu baris ke dua. Sehingga apabila dihitung nilai determinannya maka yang akan dihasilkan yaitu 0.


karena ada kolom yang semua elemennya nol, yaitu kolom pertama. Sehingga apabila dihitung nilai determinannya maka yang akan dihasilkan yaitu 0.

2. Jika ada satu baris atau kolom matriks A merupakan kalipatan dari baris atau kolom yang lain, maka det(A) = 0

Contoh:


karena ada baris yaitu baris ke dua yang semua elemennya merupakan kelipatan dari baris lainnya yaitu baris pertama.Sehingga apabila dihitung nilai determinannya maka yang akan dihasilkan yaitu 0.


karena ada kolom yang semua elemennya merupakan kelipatan dari kolom lainnya yaitu pada kolom pertama dan ke dua. Dimana kolom pertama merupakan kelipatan dari kolom ke dua.

3. Jika Matriks A merupakan matriks segitiga atas atau matriks segitiga bawah, maka determinan matriks A adalah perkalian unsur-unsur diagonal utamanya.

Contoh:


karena matriks tersebut merupakan matriks segitiga maka determinannya yaitu perkalian unsur-unsur diagonal utama yaitu 1, 4, dan 6.


Rangkuman Materi Sifat Determinan Matriks
Demikianlah Pembahasan Kita Kali ini Mengenai Rangkuman Materi Sifat Determinan Matriks,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2016/05/rangkuman-materi-sifat-determinan.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments