Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Operasi Aljabar Pada Bentuk Akar Dilengkapi Pembahasan Contoh Soal

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Operasi Aljabar Pada Bentuk Akar Dilengkapi Pembahasan Contoh Soal, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Operasi Aljabar Pada Bentuk Akar Dilengkapi Pembahasan Contoh Soal Selengkapnya.

lihat juga


Operasi Aljabar Pada Bentuk Akar Dilengkapi Pembahasan Contoh Soal

Operasi aljabar pada bentuk akar merupakan operasi dalam bentuk penjumlahan, pengurangan ,perkalian maupun pembagian dalam bentuk akar yang digunakan untuk menyederhanakan bentuk akar.

Penjumlahan dan Pengurangan Bentuk Akar

Sifat - sifat dari penjumlahan dan pengurangan bentuk akar yang biasa di gunakan secara umum bisa digambarkan berikut ini :
                                            a√b  + c√b  = (a + c) √b
                                            a√b  - c√b  = (a - c) √b
                                            dengan a, b, c, ∈R dan b ≥ 0

Dari gambar sifat-sifat perhitungan dari bentuk akar diatas kita bisa dengan mudah dalam menyelesaikan operasi hitungan aljabar bentuk akar tersebut dengan menggunakan rumus-rumus diatas.
Berikut contoh soal penjelasan dari konsep di atas :

Hitunglah operasi bentuk akar di bawah ini :
1. 4√2 + 7√2 + 2√2
2. 7√5 - 9√5 - 3√5
3. 6√3 + 9√3 - 2√3

Penyelesaian:
1. 4√2 + 7√2 + 2√2  = (4 + 7 +2)√2
                                  = 13√2
Jadi, penjumlahan dari 4√2 + 7√2 + 2√2  adalah 13√2

2. 7√5 - 9√5 - 3√5  = (7 – 9 – 3)√5
                                = -5√5
Jadi penjumlahan dari 7√5 - 9√5 - 3√5   adalah -5√5

3. 6√3+ 9√3- 2√3 = (6 + 9 -2) √3  = 13√3
Jadi hasil dari penjumlahannya adalah 133

Perkalian dan Pembagian Bentuk Akar

Sifat - sifat dari perkalian dan pembagian dalam bentuk akar bisa dijabarkan seperti berikut :
                                            ab  x cd  = ac bd
                                            dengan a, b, c, d ∈R dan b ≥ 0, d ≥ 0

Untuk lebih jelasnya perhatikan contoh soal berikut :
a. √5 x √4
b. 7√5 x 9√3

Penyelesaian :
a. √5 x √4 = √(5 x 4) = √20
b. 7√5 x 9√3  = (7x9) x √5 x √3
                       = (7 x 9) x √(5 x 3)
                       = 63 x √15
                       = 63√15
Jadi hasil perkalian bentuk akar dari 7√5 x 9√3 adalah : 63√15.

Sifat pembagian bentuk akar diuraikan sebagai berikut :
                                                                                                a/b  = a/b
                                                                                                dengan a, b ∈R dan a ≥ 0, b ≥ 0
Contoh :
1. 8√10
     4√5
2. 2√4
    6√8

Penyelesaian :
Dalam penyelesaian operasi akar perkalian dan pembagian tidak jauh berbeda dengan mengoperasikan bentuk akar dengan penjumlahan dan juga pengurangan, sehingga :


Jadi hasil pembagian dari 8√10
                                             4√5  adalah : 22


Jadi hasil pembagian dari 2√4
                                            6√8 adalah : 0,3√0,5

Operasi Campuran Bentuk Akar

Prioritas yang paling utama dalam menyelesaikan soal - soal berbentuk bilangan campuran yaitu bilangan yang ada di dalam tanda kurung. Jika tidak ada tanda kurung maka :
1. Pangkat dan akar sama kuat
2. Perkalian dan pembagian sama kuat
3. Penjumlahan dan pengurangan sama kuat
4. Perkalian dan pembagian lebih kuat dari penjumlahan dan pengurangan

Contoh :
Selesaikanlah pecahan bentuk akar dibawah ini :
a. 2 / (√5 - √3)
b. 6 / (4√4 + √3)

Penyelesaian :
a. Untuk penyelesaian pecahan tersebut kita bisa menggunakan rumus a/(√a + √b), sehingga :
    2 / (√5 - √3) = 2 / (√5 - √3) x 2 / (√5 + √3) / √5 + √3)
                         = (2√5 + 2√3) / (5 - 3)
                         = (2√5 + 2√3) / 2
                         = √5 + √3
Jadi bisa diketahui bahwa hasil pecahan dari 2/(√5 - √3) adalah √5 + √3

b. 6 / (4√4 + √3) = 6 / (4√4 + √3 x 6 (4√4 - √3 / 6 (4√4 - √3
                            = (24√4 - 4√3) / (4-3)
                            = (24√4 - 4√3) /1



Operasi Aljabar Pada Bentuk Akar Dilengkapi Pembahasan Contoh Soal
Demikianlah Pembahasan Kita Kali ini Mengenai Operasi Aljabar Pada Bentuk Akar Dilengkapi Pembahasan Contoh Soal,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2016/05/operasi-aljabar-pada-bentuk-akar.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments