Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Penjumlahan dan Pengurangan Dan Perkalian Matriks Dengan Skalar

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Penjumlahan dan Pengurangan Dan Perkalian Matriks Dengan Skalar, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Penjumlahan dan Pengurangan Dan Perkalian Matriks Dengan Skalar Selengkapnya.

lihat juga


Penjumlahan dan Pengurangan Dan Perkalian Matriks Dengan Skalar

Matriks merupakan kumpulan bilangan yang disusun dalam bentuk persegi panjang atau bujur sangkar. Pemberian nama pada matriks ditulis dengan huruf besar, misalnya A, B, C,...,Z, dan setiap matriks akan mempunyai baris dan kolom. 

Banyaknya baris dan kolom ini menentukan ukuran atau ordo matriks. Misalnya matriks A mempunyai baris sebanyak m dan kolom sebanyak n, maka ordo matriks A adalah m x n, dengan m dan n merupakan bilangan bulat positif. Secara umum dapat ditulis matriks A = , dengan adalah elemen matriks A dengan i = 1,2,...,m dan j = 1,2,...,n. 

 Atau matriks A dapat ditulis dalam bentuk:










Contoh:
Definisikan matriks =   yang berukuran 4 x 4 dengan
dengan i = 1,2,3,4 dan j = 1,2,3,4. Tentukan matriks A

Jawab


Submatriks dari matriks A adalah sembarang matriks yang didapatkan dengan cara menghilangkan beberapa baris atau kolom tertentu dari matriks A. Matriks A sendiri dapat dipandang sebagai submatriks dari A.

Contoh:
Submatriks dari matriks antara lain adalah: 

 
 

Bentuk Matriks Khusus
  1. Suatu matriks disebut matriks segi, jika banyaknya baris sama dengan banyaknya kolom. Jika banyaknya kolom = banyaknya baris = n, maka matriks tersebut dikatakan matriks segi berordo n atau berukuran n. Sedangkan elemen elemen disebut elemen diagonal utama.
  2. Suatu matrik segi disebut matriks segitiga atas, jika elemen di bawah diagonal utama bernilai nol. Sedangkan matriks segitiga bawah, jika elemen di atas diagonal utama bernilai nol.
  3. Suatu matriks segi disebut matriks identitas, jika semua elemen diagonal utamanya bernilai satu, sedangkan yang lainnya bernilai nol. Matriks identitas berukuran n, diberi notasi
Contoh:

  merupakan matriks segi berordo/berukuran 3, karena banyaknya baris = banyaknya kolom = 3


merupakan  matrik segitiga atas, karena semua elemen di bawah diagonal utamanya nol.

OPERASI MATRIKS

Penjumlahan, Pengurangan, dan Perkalian Matriks serta Perkalian dengan Skalar
Tinjau A dan B dua matriks yang berukuran sama, misalkan ukurannya m x n


Penjumlahan dan pengurangan matrik A dan B, ditulis AB adalah matriks yang diperoleh dengan menjumlahkn elemen-elemen yang seletak antara matriks A dan B, yaitu:


Penjumlahan dan pengurangan matrik tidak dapat dilakukan jika kedua matriks berbeda ukurannya.
Perkalian skalar k dengan matriks A, ditulis kA, adalah matriks yang diperoleh dengan mengalihkan setiap elemen A dengan skalar k, yaitu:


Contoh:

Misalkan matriks






Hukum-Hukum pada Penjumlahan/Pengurangan  dan Perkalian Skalar 
Jika A, B, dan C adalah matriks-matriks berukuran sama dan    skalar, maka
  1. ( A + B ) + C = A + ( B + C )
  2. A + ( -A )=O
  3. A + B = B + A
  4.   ( A + B ) =
  5. 0A = O  
Catatan: O adalah matriks nol, yaitu matriks yang semua elemennya nol.

Perkalian Matriks

Tinjau matriks A = (), dan B = (), dengan banyaknya kolom matrik A sama dengan banyaknya baris matriks B. Misalkan A berukuran m x p dan B berukuran p x n, maka matriks hasil kali A dan B adalah berukuran m x n yang elemen ke-ij diperoleh dari mengalikan baris ke-i dari matriks A dengan kolom ke-j dari matriks B, seperti dibawah ini.


dengan,
 
Contoh

Misalkan matriks





Perhatikan, ukuran matriks A adalah 2 x 3 dan matriks B berukuran 3 x 1, sehingga matriks hasil perkalian AB berukuran 2 x 1 seperti berikut:






Hukum-Hukum pada Perkalian Matriks
  1. ( A B )  C = A  ( B C )                Hukum assosiatif
  2.  A ( B + C ) = A B + A C           Hukum Distributif Kiri
  3. ( B + C ) A = B A + C A            Hukum Distributif Kanan
  4. k ( AB ) = ( k A ) B = A ( k B)    k skalar
Catatan: AB # BA

Contoh:
 
Misalkan matriks





maka:





dari contoh di atas dapat dilihat bahwa, 3A +3B = 3(A+B)


    Penjumlahan dan Pengurangan Dan Perkalian Matriks Dengan Skalar
    Demikianlah Pembahasan Kita Kali ini Mengenai Penjumlahan dan Pengurangan Dan Perkalian Matriks Dengan Skalar,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

    artikel ini url permalinknya adalah http://www.belajarmatematika.info/2016/04/penjumlahan-dan-pengurangan-dan.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
    Blogger
    Disqus

    No comments