Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Sifat-Sifat Barisan atau Deret Aritmetika

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Sifat-Sifat Barisan atau Deret Aritmetika, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Sifat-Sifat Barisan atau Deret Aritmetika Selengkapnya.

lihat juga


Sifat-Sifat Barisan atau Deret Aritmetika

kali ini akan dibahas mengenai sifat-sifat yang dimiliki oleh barisan atau deret aritmetika. Kalian harus memperhatikan kembali konsep-konsep tentang suku ke-n dan jumlah n suku pertama di dalam deret aritmetika. Apabila kalian telah memahaminya dengan baik, maka tentunya kalian akan bisa memahami sifat-sifat yang berlaku pada barisan ataupn deret aritmetika yang di bawah ini dengan lebih mudah:

Sifat-Sifat Barisan atau Deret Aritmetika


Sifat Pertama:
Apabila x, y, dan z merupakan bilangan yang berurutan dari suatu barisan aritmetika, maka akan berlaku: 

"Dua kali bilangan yang ditengah sama dengan jumlah dari kedua bilangan yang ada di sampingnya"

2y = x + z

Pembuktian:
Misalkan saja sebuah barisan aritmetika mempunyai beda b maka y = x + b dan z = x + 2b sehingga:

2y = x + z
2(x + b) = x + ( x + 2b)
2x + 2b = 2x + 2b

Terbukti bahwa ruas kanan = ruas kiri


Sifat Kedua:
Apabila w, x, y, z, empat bilangan yang berurutan dari suatu barisan aritmetika, maka akan berlaku:

"Jumlah dari dua bilangan yang terletak di tengah sama dengan jumlah dari dua bilangan yang ada di sampingnya"

x + y = w + z

Pembuktian:
Misalkan suatu barisan aritmetika memiliki beda b maka x = w + b, y = w + 2b, z = w + 3b sehingga:

x + y = w + z
(w + b) + (w + 2b) = w + (w + 3b)
2w + 3b = 2w + 3b

Terbukti bahwa ruas kanan = ruas kiri


Sifat Ketiga:
Apaila U adalah suku ke-n barisan aritmetika maka berlaku:

"Selisih antara jumlah n suku pertama dan jumlah n - 1 suku pertama adalah suku ke-n"





Sifat-Sifat Barisan atau Deret Aritmetika
Demikianlah Pembahasan Kita Kali ini Mengenai Sifat-Sifat Barisan atau Deret Aritmetika,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2015/10/sifat-sifat-barisan-atau-deret.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments