Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Cara Menyelesaikan Soal SPLDV Dengan Metode Substitusi

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Cara Menyelesaikan Soal SPLDV Dengan Metode Substitusi, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Cara Menyelesaikan Soal SPLDV Dengan Metode Substitusi Selengkapnya.

lihat juga


Cara Menyelesaikan Soal SPLDV Dengan Metode Substitusi

Cara yang digunakan di dalam metode ini ialah dengan menyatakan variabel yang satu ke dalam variabel yang lain pada suatu persamaan. Agar kalian lebih mudah dalam memahami metode ini langsung saja kita praktekkan untuk menyelesaikan contoh soal yang ada di bawah ini:

Cara Menyelesaikan Soal SPLDV Dengan Metode Substitusi


Contoh Soal:
Gunakan metode subtitusi untuk menentukan himpunan penyelesaian dari sistem persamaan 5x + 5y = 25 dan 3x + 6y = 24 untuk x, y ∈ R!

Penyelesaian:
5x + 5y = 25 .......... (1)
3x + 6y = 24 .......... (2)

Perhatikan persamaan (1)

5x + 5y = 25 ó5y = 25 – 5x
                       ó y = 5 – x

Kemudian, nilai y tersebut disubtitusikan pada persamaan (2) sehingga diperoleh:

3x + 6y = 24 ó3x + 6(5 – x) = 24
                       ó3x + 30 – 6x = 24
                       ó- 3x = -30 + 24
                       ó- 3x = -6
                       ó x = 2

Nilai y yang diperoleh dengan mensubtitusikan nilai x = 2 pada persamaan (1) atau persamaan (2) sehingga diperoleh:

5x + 5y = 25 ó5 x 2 + 5y = 25
                       ó10 + 5y = 25
                       ó5y = 15
                       óy = 3

Jadi himpunan penyelesaian dari sistem persamaan 5x + 5y = 25 dan 3x + 6y = 24 adalah {(2, 3)}



Cara Menyelesaikan Soal SPLDV Dengan Metode Substitusi
Demikianlah Pembahasan Kita Kali ini Mengenai Cara Menyelesaikan Soal SPLDV Dengan Metode Substitusi,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2015/10/cara-menyelesaikan-soal-spldv-dengan_5.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments