Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Cara Menyelesaikan Soal SPLDV dengan Metode Eliminasi

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Cara Menyelesaikan Soal SPLDV dengan Metode Eliminasi, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Cara Menyelesaikan Soal SPLDV dengan Metode Eliminasi Selengkapnya.

lihat juga


Cara Menyelesaikan Soal SPLDV dengan Metode Eliminasi

Kali ini kita akan membahas metode lain yang juga bisa digunakan untuk mengerjakan soal-soal SPLDV yang dinamakan dengan metode Eliminasi. Yang dimaksud dengan metode eliminasi adalah menghilangkan atau melenyapkan salah satu variabel dan variabel yang akan di eliminasi haruslah memiliki koefisien yang sama. Apabila koefisien variabel tidak sama maka kalian harus mengalikan salah satu persamaan dengan konstanta tertentu sehingga akan ada variabel yang memiliki koefisien sama. Untuk memahami metode ini, langsung saja kita cermati contoh soal dan cara penyelesaiannya di bawah ini:

Contoh Soal SPLDV dan Penyelesaiannya dengan Metode Eliminasi


Contoh Soal 1:
Ada dua buah persamaan, yaitu 2x + y = 8 dan x – y = 10 dengan x, y R. Tentukanlah himpunan penyelesaian sistem persamaan tersebut dengan metode eliminasi!

Penyelesaian:
Dari kedua persamaan tersebut, kalian bisa melihat koefisien yang sama dimiliki oleh variabel y. Maka dari itu, variabel y inilah yang bisa kita hilangkan dengan cara dijumlahkan. Dengan demikian nilai x bisa ditentukan dengan cara berikut ini:

2x + y = 8
  x – y = 10 +
      3x = 18
        X = 6

2x + y = 8 | x 1 | 2x + y = 8
x – y = 10 | x 2 | 2x – 2y = 20
                                  3y = -12
                                   y = -4

Maka, himpunan penyelesaian dari sistem persamaan di atas adalah {(6, 4)}.


Metode Campuran

Selain dengan menggunakan metode grafik, metode substitusi, dan metode eliminasi, sistem persamaan linear juga bisa kita selesaikan dengan menggunakan metode campuran yang merupakan kombinasi dari metode substitusi dengan metode eliminasi. Caranya adalah dengan menyelesaikan SPLDV dengan metode eliminasi terlebih dahulu baru kemudian dilanjutkan dengan metode substitusi. Simak contoh soal di bawah ini untuk memahami caranya:

Contoh Soal 2:
Tentukan himpunan penyelesaian dari sistem persamaan 2x + y = 5 dan 3x – 2y = 11 dimana x, y R.

Penyelesaian:
2x + y = 5 ........ (1)
3x – 2y = 11 .... (2)

Dari kedua persamaan di atas tidak ditemukan koefisien variabel yang sama sehingga salah satu koefisien variabel harus disamakan terlebih dahulu dengan cara mengalikan kedua persamaan dengan suatu bilangan. Semisal kita ingin meyamakan koefisien dari variabel x maka persamaan pertama dikalikan dengan 3 dan persamaan yang kedua dikalikan dengan 2.

2x + y = 5      | x3 | ó 6x + 3y = 15
3x – 2y = 11  | x2 | ó6x – 4y = 22 -
                                            7y = -7
                                             Y = -1

Lalu hasil tersebut bisa kita substitusikan ke salah satu persamaan. Misalkan persamaan pertama, sehingga diperoleh:

2x + y = 5
2x -1 = 5
2x = 5 + 1
2x = 6
x = 3

Jadi, himpunan penyelesaian dari sistem persamaan linear tersebut adalah {(3, -1)}



Cara Menyelesaikan Soal SPLDV dengan Metode Eliminasi
Demikianlah Pembahasan Kita Kali ini Mengenai Cara Menyelesaikan Soal SPLDV dengan Metode Eliminasi,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2015/10/cara-menyelesaikan-soal-spldv-dengan.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments