Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian Selengkapnya.

lihat juga


Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian

Ketika kalian ingin mempelajari materi mengenai persamaan dan pertidaksamaan satu variabel, maka sebaiknya kalian memahami materi dasarnya terlebih dahulu. Tujuannya adalah agar kalian bisa lebih mudah dalam memahami materi tingkat lanjut dari sistem persamaan dan pertidaksamaan linear satu variabel. Materi dasar yang dimaksud disini diantaranya adalah pengertian tentang pernyataan, kalimat terbuka, serta himpunan penyelesaiannya. Pada kesempatan ini Rumus Matematika Dasar akan memberikan penjelasan satu-persatu mengenai ketiga hal tersebut. Berikut adalah penjelasannya:

Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian
Google Images

Penjelasan Mengenai Pernyataan, Kalimat Terbuka, dan Himpunan Penyelesaian

Pernyataan

Di dalam kehidupan sehari-hari pastinya kalian sering menjumpai atau mendengar beberapa kalimat seperti:

1. Luas pulau Papua lebih besar daripada pulau Bali.
2. Bandar Lampung adalah ibukota provinsi Lampung
3. Menara Eifel terletak di Perancis
4. Empat lebih kecil daripada tujuh (4 < 7)

Kalimat-kalimat di atas adalah contoh kalimat yang memiliki nilai benar karena setiap orang pasti menyetujui bahwa kalimat tersebut adalah benar.

Sekarang mari kita bandingkan dengan kalimat-kalimat berikut ini:

1. Luas Pulau Sumatera lebih Kecil daripada pulau Bali
2. Ibukota Provinsi Aceh adalah Pekanbaru
3. Matahari terbenam di arah timur
4. Sebelas lebih besar daripada tiga puluh (11 > 30)

Kesimpulan yang dapat kita tarik dari keempat kalimat tersebut adalah bahwa kalimat-kalimat itu bernilai salah karena sudah pasti setiap orang tidak setuju dengan kalimat-kalimat tersebut.


Nah, dari kedua contoh jenis kalimat di atas kita dapat menimpulkan bahwa Pernyataan adalah sebuah kalimat yang nilai kebenarannya dapat ditentukan (salah atau benar).


Sekarang coba kalian amati lagi beberapa kalimat berikut:

1. Pantai ini indah sekali
2. Pria itu sungguh tampan

Apakah kalian bisa menentukan nilai kebenaran dari dua buah kalimat di atas? Apakah kalimat-kalimat itu dapat disebut sebagai pernyataan?

Ketahuilah bahwa kedua kalimat tersebut bukanlah pernyataan. Mengapa demikian? karena kita tidak dapat menentukan nilai kebenarannya. Sebagai contoh pada kalimat kedua "Pria itu sungguh tampan". tentu tidak semua orang bisa menyetujuinya, bisa saja seseorang menganggap pria itu tampan tetapi orang lain menganggap pria itu wajahnya biasa saja. Jadi, kalimat yang kebenaranya belum bisa ditentukan tidak bisa dikategorikan sebagai sebuah pernyataan di dalam matematika.

Kalimat terbuka


Agar lebih mudah dalam memahami apa yang disebut dengan kalimat terbuka dalam matematika, coba perhatikan kalimat di bawah ini:

"Canada terletak di benua x"

Apabila x diganti dengan Amerika, maka kalimat tersebut bisa kita anggap bernilai benar. Akan tetapi jika x diganti dengan Australia, maka kalimat tersebut nilainya akan menjadi salah. kalimat seperti itulah yang disebut sebagai kalimat terbuka karena nilai kebenarannya bergantung kepada variabelnya.

Mari kita simak beberapa contoh kalimat terbuka di dalam plajaran matematika berikut ini:

1. 7 + x = 12, x adalah anggota himpunan bilangan cacah
2. 8 - y = 5, y adalah anggota himpunan bilangan bulat

Kalimat pertama dapat dinyatakan benar apabila x diganti dengan angka 5 dan apabila x diganti dengan angka selain 5 maka pernyataan tersebut bernilai salah. Pada pernyataan tersebut x disebut sebagai variabel sementara 7 dan 12 disebut sebagai konstanta. Begitu juga dengan kalimat kedua, kalimat tersebut akan bernilai benar jika y diganti dengan angka 3 dan jika y diganti dengan angka selain 3 maka sudah tentu kalimat tersebut akan bernilai salah. Pada kalimat kedua variabelnya adalah y sedangkan konstantanya adalah 8 dan 5.

Maka, Di dalam kalimat terbuka kita akan menjumpai Variabel dan Konstanta. Variabel dapat diganti dengan sembarang anggota himpunan yang sudah ditentukan. Sementara konstanta bersifat tetap dan tidak dapat digantikan.

Himpunan penyelesaian kalimat terbuka

Kita ambil contoh kalimat terbuka berikut ini:

x2= 81

Kalimat tersebut akan bernilai benar apabila kita mengganti variabel x dengan 9 atau -9. Maka, penyelesaian dari kalimat terbuka tersebut adalah x = 9 atau x = -9. Maka, himpunan penyelesaian dari kalimat x2 = 81 adalah {9, -9}


Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian
Demikianlah Pembahasan Kita Kali ini Mengenai Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2015/04/pengertian-pernyataan-kalimat-terbuka.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments