Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif Selengkapnya.

lihat juga


Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif

Ketika kalian ingin menentukan KPK dari sebuah bilangan, maka kalian harus memahami bagaimana cara mencari kelipatan dari sebuah bilangan bulat positif. Materi ini sangat penting untuk dikuasai karena akan sangat berguna di dalam memahami berbagai materi pelajaran matematika lainnya. Oleh sebab itu materi ini sudah diajarkan sejak sekolah dasar. Yuk mari kita pelajari lagi materi tersebut bersama rumus matematika 

Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif

Memahami Konsep Cara Menentukan Kelipatan Bilangan Bulat Positif

Apabila x adalah anggota himpunan bilangan asli dari (a) = 1, 2, 3, 4, 5, 6, 7, ... Maka kelipatan dari x merupakan semua hasil perkalian antara x dengan masing-masing anggota himpunan (a). Sebagai contoh, kelipatan dari 5 adalah sebagai berikut:

5 x 1 = 5
5 x 2 = 10
5 x 3 = 15
5 x 4 = 20
5 x 5 = 25
5 x 6 = 30
5 x 7 = 35
5 x 8 = 40
5 x 9 = 45
5 x 10 = 50, dan seterusnya.

Dari operasi perkalian di atas kita bisa mengetahui kelipatan dari bilangan asli 5 adalah 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, ...

Operasi perkalian seperti itu biasanya muncul dalam soal-soal seperti yang ada di bawah ini:

Contoh soal 1:

Tentukanlah semua bilangan kelipatan dari 7 yang kurang dari 50

Jawaban:

7 x 1 = 7
7 x 2 = 14
7 x 3 = 21
7 x 4 = 28
7 x 5 = 35
7 x 6 = 42
7 x 7 = 49

Maka, bilangan kelipatan dari 7 yang nilainya kurang dari 50 adalah 7, 14, 21, 28, 35, 42, dan 49


Contoh soal 2:

Tentukanlah semua bilangan kelipatan dari 12 yang lebih dari 24 dan kurang dari 100

Jawaban:

12 x 1 = 12
12 x 2 = 24
12 x 3 = 36
12 x 4 = 48
12 x 5 = 60
12 x 6 = 72
12 x 7 = 84
12 x 8 = 96

Maka semua bilangan kelipatan dari 12 yang lebih dari 24 dan kurang dari 100 adalah 36, 48, 60, 72, 84, dan 96


Contoh soal 3:

Cari dan tentukanlah seluruh bilangan yang merupakan kelipatan dari 8 dan 6 yang nilainya kurang dari 72.

Jawaban:


Kelipatan dari 8:
8 x 1 = 8
8 x 2 = 16
8 x 3 = 24
8 x 4 = 32
8 x 5 = 40
8 x 6 = 48
8 x 7 = 56
8 x 8 = 64

Kelipatan dari 6:
6 x 1 = 6
6 x 2 = 12
6 x 3 = 18
6 x 4 = 24
6 x 5 = 30
6 x 6 = 36
6 x 7 = 42
6 x 8 = 48
6 x 9 = 54
6 x 10 = 60
6 x 11 = 66

Sekarang kalian perhatikan dari contoh soal nomor 3 di atas. Perkalian yang diberi warna merah merupakan kelipatan persekutuan dari kedua angka tersebut (8 dan 6) dari situ kita dapat mengetahui bahwa kelipatan persekutuan dari 8 dan 6 adalah 24 dan 48. Sehingga KPK dari 8 dan 6 adalah 24.



Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif
Demikianlah Pembahasan Kita Kali ini Mengenai Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2015/02/cara-mudah-menentukan-kelipatan.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments