Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Belajar Mencari Persamaan Garis Singgung Kurva

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Belajar Mencari Persamaan Garis Singgung Kurva, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Belajar Mencari Persamaan Garis Singgung Kurva Selengkapnya.

lihat juga


Belajar Mencari Persamaan Garis Singgung Kurva

Pengertian Persamaan Garis Singgung Kurva merupakan turunan dari Garis Lurus yang pernah kita pelajari waktu SMP, yaitu cara menentukan gradien dan persamaan garis lurus. 

Gradien Garis selalu diberi simbol "m" dimana:
              *) y = mx + c = m
              *) ax + by = c adalah m = - a/b
              *) yaitu melalui dua titik (x1, y1) dan (x2, y2) adalah m = y2 - y1 / x2 - x1

Gradien Dua Garis Lurus 
              *) Sejajar : m1 = m2
              *) Tegak Lurus : m1.m2 = -1

Persamaan Garis Lurus 
              *) Untuk Gradien satu titik (x1, y1) dan gradien m,  maka:
                   y - y1 = m (x - x1)
              *) Untuk Gradien Dua titik (x1, y1) dan (x2, y2), maka:
                  y - y1 / y2 - y1 = x - x1 / x2 - x1

Perhatikan Gambar Grafik Fungsi y = f(x)
grafik-fungsi.rumus-mtk.blogspot.com
Persamaan Garis Singgung Kurva
Seperti Latihan Berikut ini:
  1. Tentukan persamaan garis singgung kurva   y=x^2 di titik ( -1 , 1) !
    Jawab : 
    * cari m dulu  di x = -1
    \begin{array}{rcl}m & = & f'(a)\\ & = & 2x\\m & = & 2(-1)\\ & = & - 2\end{array}

    * maka persamaan garris singgung kurva dengan gradien m = -2 di ( -1 , 1) adalah
    \begin{array}{rcl}y-y_1 & = & m(x-x_1)\\y-1 & = & -2(x-(-1))\\y-1 & = & -2x-2\\y & = & - 2x-1\end{array}

  2. Tentukan persamaan garis singgung kurva   y=x^2 di titik yang berabsis (-2) !
    Jawab : 
    * cari m dulu  di absis x = -2
    \begin{array}{rcl}m & = & f'(-2)\\ & = & 2x\\m & = & 2(-2)\\ & = & - 4\end{array}

    * Bandingkan dengan soal no.1, disini kita belum punya y1 sehingga kita cari terlebih dulu
    \begin{array}{rcl}y & = & x^2\\ & = & (-2)^2\\y_1 & = & 4\end{array}

    * maka persamaan garis singgung kurva dengan gradien m = -4 di ( -2 , 4) adalah
    \begin{array}{rcl}y-y_1 & = & m(x-x_1)\\y-4 & = & -4(x-(-2))\\y-4 & = & -4x-8\\y & = & - 4x-4\end{array}

  3. Tentukan persamaan garis singgung kurva    y=2x^2-3x yang sejajar garis   y = x  !
    Jawab : 
    * cari gradien m dari persamaan garis lurus y x
    ingat   y={\color{Red} m}x+c
    maka m = 1 , diketerangan soal,  garis saling sejajar, maka m1 = m2 = 1

    * cari titik singgungnya  (x1,y1)
    ingat m=f'(a) maka
    \begin{array}{rcl}m & = & f'(a)\\1 & = & 4x-3\\4x & = & 4\\x & = & 1 \end{array}

    x1 = 1 maka kita cari y1 dengan mensubtitusi x =1 ke   y=2x^2-3x
    \begin{array}{rcl}y & = & 2x^2-3x\\& = & 2(1)^2-3(1)\\y & = & -1\end{array}

    * maka persamaan garis singgung kurva dengan gradien m = 1 di ( 1 , -1) adalah
    \begin{array}{rcl}y-y_1 & = & m(x-x_1)\\y-(-1)& = & 1(x-1)\\y+1 & = & x-1\\y & = & x-2\end{array}

  4. Tentukan Persamaan garis singgung pada kurva   y=-2x^2+6x+7 yang terletak tegak lurus garis x – 2y +13 = 0 !
    Jawab : 
    * cari gradien m dari persamaan garis lurus x – 2y +13 = 0
    ingat   {\color{Green} a}x+{\color{Blue} b}y=c maka     {\color{Red} m}=-\frac{{\color{Green} a}}{{\color{Blue} b}}
    untuk x – 2y +13 = 0 maka {\color{Red} m}=-\frac{1}{(-2)}=\frac 12

    keterangan soal garis saling tegak lurus, maka m1 . m2 = – 1
    \begin{align*}m_1.m_2 & = & -1\\\left ( \frac{1}{2} \right ) .m_2 & = & -1\\m_2 & = & (-1).\left ( \frac 21 \right )\\m_2 & = & -2\end{align*}

    * cari titik singgungnya  (x1,y1) dengan m = -2
    ingat m=f'(a) maka
    \begin{align*}m & = & f'(a)\\-2 & = & -4x+6\\-4x & = & -2-6\\x & = & 2\end{align*}

    x1 = 2 maka kita cari y1 dengan mensubtitusi x = 2 ke   y=-2x^2+6x+7
    \begin{array}{rcl}y & = & -2x^2+6x+7\\ & = & -2(2)^2+6(2)+7\\y & = & 11\end{array}

    * maka persamaan garis singgung kurva dengan gradien m = -2 di titik ( 2 , 11) adalah
    \begin{array}{rcl}y-y_1 & = & m(x-x_1)\\y-11 & = & -2(x-2)\\y-11 & = & -2x+4\\y & = & -2x+15\\ & atau & \\ 2x+y-15 & = & 0\end{array}


Belajar Mencari Persamaan Garis Singgung Kurva
Demikianlah Pembahasan Kita Kali ini Mengenai Belajar Mencari Persamaan Garis Singgung Kurva,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2014/12/belajar-mencari-persamaan-garis.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments