Ayo Belajar

Selamat Datang Di Website Belajar Matematika Merupakan Kumpulan Materi Matematika SD, Materi Matematika SMP, Materi Matematika SMA/SMK, Contoh Soal dan Pembahasan

Rumus Geometri Dimensi Dua

Selamat datang Teman Teman Di Tempat Belajar Matematika Oline, Disini kalian akan menemukan berbagai solusi dari pelajaran matematika yang kalian butuhkan, Didalam sini merupakan referensi belajar anda bukan berarti sebagai patokan belajar. Materi yang Tersedia disini Diantaranya Materi Matematika Sd, SMP, SMA, SMK, Contoh Soal dan Pembahasan, Matematika Dasar, Matematika SMP,matematika aljabar,Matematika Akutansi, Matematika Ekonomi,matematika anak usia dini, Matematika Diskrit, Dan pada kesempatan kali ini Materi matematika yang kami bagikan kali ini yaitu Rumus Geometri Dimensi Dua, Tetap semangat belajar matematika Karena Matematika itu Mudah Berikut Rumus Geometri Dimensi Dua Selengkapnya.

lihat juga


Rumus Geometri Dimensi Dua

Pengertian Matrik
Matrik adalah himpunan bilangan yang tersusun menurut baris-baris dan kolom-kolom sehingga terbentuk persegi panjang, dan ditempatkan diantara dua kurung.

Tanda kurung yang dipakai : Kurung Biasa ( ), Kurung Siku [ ] , atau kurung bergaris dua || ||.
Daftar diatas dapat digambarkan seperti:

Contohnya:

Hubungan Matrik dengan Matrik
Definisi:
Dua buah Matriks A dan B dikatakan sama, ditulis A = B, jika dan hanya jika:
a. Matriks A dan B mempunyai ordo sama
b. Unsur - unsur yang seletak pada matriks  A dan Matriks B sama.

Macam-macam Matriks

a. Matriks Baris
Matriks Baris adalah matriks yang terdiri dari satu bari, contohnya:

b. Matriks Kolom
Matriks Kolom adalah matriks yang terdiri dari satu kolom, contohnya:

c. Matriks Persegi atau Matriks Bujung Sangkar
Matriks Persegi atau Matriks Bujur Sangkar adalah  matriks yang mempunyai jumlah baris = jumlah kolom, contohnya:

d. Matriks Nol
Matriks Nol adalah satu matriks m x n yang setiap unsurnya 0 berordo m x n, ditulis dengan huruf  O. Contohnya:

e. Matriks Segi Tiga
Matriks Segi Tiga adalah suatu matriks bujur sangkar yang unsur-unsur dibawah atau diatas diagonal utama semuanya 0. Contohnya:

f. Matriks Diagonal
Matriks Diagonal adalah suatu matrik bujur sangkar yang semua unsurnya, kecuali unsur-unsur pada diagonal utama adalah nol. Contohnya:

g. Matriks Skalar
Matriks Skalar adalah matriks diagonal yang unsur-unsur pada diagonal utama semuanya sama. Contohnya:

h. Matriks Identitas atau Matriks Satuan
Matriks Identitas atau Matriks Satuan adalah matriks diagonal yang unsur-unsur pada diagonal utama semuanya satu ditulis edngan huruf I. Contohnya:

i. Matriks Simetris
Matriks Simetris adalah suatu matriks bujur sangkar yang unsur pada bari ke-i kolom ke-j sama dengan unsur pada baris ke-j kolom ke-i sehingga aij = aji. Contohnya:

j. Matriks Mendatar
Matriks Mendatar adalah matriks yang banyaknya baris kurang dari banyaknya kolom. Contohnya:

k.Matriks Tegak
Matriks Tegak adalah suatu matriks yang banyaknya baris lebih banyaknya kolom. Contohnya:

l. Matriks Transpos (Notasi At)
Matriks Transpos (Notasi At) adalah matriks baru dimana elemen kolom pertama = elemen baris pertama
Matriks A, elemen kolom kedua = elemen baris kedua Matriks A, elemen kolom ketiga = elemen baris ketiga matriks A.
Misalnya Matriks A.
Maka Transpos A adalah At


Rumus Geometri Dimensi Dua
Demikianlah Pembahasan Kita Kali ini Mengenai Rumus Geometri Dimensi Dua,Semoga kalian bisa memahami penjelasan materi di atas dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!.

artikel ini url permalinknya adalah http://www.belajarmatematika.info/2012/07/rumus-geometri-dimensi-dua.html Beri tahu teman teman kalian tentang artikel ini agar bisa lebih bermanfaat. Terima Kasih Telah Berkunjung dan Tetap Semangat Dalam Belajar
Blogger
Disqus

No comments